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Drei-Photon-Anregung von Rydberg-P-Zuständen:

Die effektive Anregung atomarer Zustände spielt eine entscheidende Rolle in Experi-
menten zur Quantendynamik mittels ultrakalter Gase. Die Anregung von Rydberg-P-
Zuständen durch eine Drei-Photon-Anregung ermöglicht die Realisierung eines Laser-
systems, das sowohl S- als auch P-Zustände adressieren kann. Die theoretische Beschrei-
bung eines solchen Anregungsprozesses beinhaltet viele unabhängige Parameter, was
die Optimierung des Lasersystems zur Maximierung des Populationstransfers in den
gewünschten Zustand erschwert. In dieser Arbeit wird die Drei-Photon-Anregung mit-
tels analytischer Beschreibungen und numerischer Simulationen theoretisch behandelt.
Eine effektive analytische Beschreibung für den Fall von großen Verstimmungen an
den dazwischenliegenden Zuständen wird hergeleitet. Es wird gezeigt, dass die Anre-
gungsdynamik in guter Näherung von nur zwei effektiven Parametern charakterisiert
werden kann. Dies ermöglicht ein intuitives Verständnis der Dynamik und eine verein-
fachte experimentelle Optimierung der Anregung. Die numerischen Simulationen der
vollen Vier-Zustands-Beschreibung zeigt hohe Übereinstimmung mit den analytischen
Vorhersagen im experimentell relevanten Parameterbereich.

Three-photon excitation of Rydberg-P-states:

The effective excitation of atomic states is a key ingredient in quantum-dynamics exper-
iments using ultracold gases. The excitation of Rydberg-P-states using a three-photon
scheme allows for implementing an experimental excitation set-up capable of address-
ing both S- and P-states. The theoretical description of such an excitation process
involves many independent parameters, making it difficult to choose them such that
the population transfer into the desired state is optimised. In this thesis the three-
photon excitation is investigated theoretically by means of analytical descriptions and
numerical simulations. An effective analytical description is presented for the case of
three-photon resonance and large detunings on the intermediate states. It is shown
that, to a good approximation, the excitation can be described using only two effective
parameters, allowing for an intuitive understanding and a simplified experimental opti-
misation. The numerical simulations of the full system are compared to the analytical
models and show good agreement in the parameter regime relevant to the experiment.
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Preface

The development of laser cooling methods, such as the magneto-optical trap [1] and

the dipole trap [2], have created a new research area in physics in the 1990’s: ultracold

atoms. Cooling atomic samples down to just above absolute zero temperature makes it

possible to observe quantum mechanical behaviour on lengthscales larger than the atom

size. The power of experiments with ultracold atoms lies in the high degree of control of

the investigated systems: there are many techniques available, using light fields as well

as static electric and magnetic fields, to control the internal and external atomic degrees

of freedom. At the heart of this lies the ability to change the electronic states in the

atom by applying laser- and microwave-fields; this is the main topic of this thesis.

Ultracold atomic systems have been used, both from a theoretical and experimental point

of view, to tackle many different problems. By arranging ultracold atoms in regular

optical lattices, it is possible to imitate the lattice structures of metallic materials and to

simulate and test models from solid state theory [3]. The control over internal degrees

of freedom allows for applications in quantum information, where ultracold atoms can

be used to implement the basic constituent of quantum computing: the quantum bit

[4, 5]. Other applications involve: the investigation of interactions and energy transport

in many-body systems [6], few-body systems [7] and quantum optics [8].

The advantage of using highly excited Rydberg atoms over ground-state atoms lies in

their long-range interaction properties. Whereas in conventional cold atomic systems

the interactions between atoms is often negligibly small; the lengthscale of interactions

between Rydberg atoms can exceed typical interatomic distances by orders of magnitude

[9]. This can be used to study strongly interacting many-body systems for a lot of

different interaction parameters.

The experimental basis for investigating Rydberg atoms is the excitation process, which

changes the state of a fraction of the ultracold atoms from the ground- to a Rydberg-state.

In this thesis a three-photon excitation scheme of Rydberg states in 87Rb is discussed. In

chapter 1 the system under consideration is illustrated and the theoretical prerequisites

for describing such a system are outlined. In chapter 2 simplified analytical models of

xi



xii Preface

the three-photon excitation in terms of two-level formulations are presented, enabling an

intuitive understanding of the excitation dynamics. A full numerical simulation is used in

chapter 3 to examine the validity of the simplified models and to optimise the excitation

scheme used in the experimental set-up. An outlook on plans for future development of

the experimental research is given in chapter 4.



Chapter 1

Introduction

1.1 Rydberg atoms

Atoms with at least one highly excited electron with a principal quantum number n & 10

are called Rydberg atoms [9, 10]. Here, as well as in most experiments related to Ryd-

berg atoms, alkali atoms are considered. Because of their single valence electron alkali

atoms have a hydrogen-like energy level structure, which is well-understood and suited

for laser cooling as there are well-separated transitions that can be used to implement

magneto-optical traps. The hydrogen energy level structure in the Bohr model [11] is

given by the series

En = −hcR∞
n2

(1.1)

with Planck’s constant h, the speed of light c, the principal quantum number n and the

Rydberg constant

R∞ =
mee

4

8 c ε20 h
3

(1.2)

where me and e are the mass and the elementary charge of the electron, and ε0 is the

vacuum permittivity. For increasing principal quantum numbers the average distance

from the nucleus for the valence electron 〈r〉 also increases, scaling with a0(n∗)2 [12, 13],

where a0 is the Bohr radius. Far away from the nucleus the valence electron experiences

a Coulomb 1/r potential, allowing to describe the atom with a hydrogen model. The

deviation from the hydrogen model arises from the interaction with electrons in the

lowest states, which are close to the nucleus. This deviation can be accounted for by a

1



2 Chapter 1. Introduction

Property Expression Scaling

Binding energy En∗ (n∗)−2

Level spacing En∗ − En∗+1 (n∗)−3

Orbit radius 〈r〉 (n∗)2

Polarisability α (n∗)7

Lifetime τ (n∗)3

Transition dipole moment | 〈e|d̂|nS〉 | (n∗)−1.5

Transition dipole moment | 〈nP|d̂|(n+ 1)S〉 | (n∗)−2

van der Waals coefficient C6 (n∗)11

Table 1.1: Enhanced Rydberg-atom properties and their scaling with the effective
quantum number n∗ [9].

phenomenological correction term in the effective principal quantum number [9]

n∗ = n− δ(n, j, l) (1.3)

with the quantum defect δ(n, j, l) that depends on the principal quantum number, the an-

gular momentum quantum number l and the total angular momentum quantum number

j including the spin-orbit interaction. The quantum defect strongly depends on angular

momentum and can be assumed to vanish for l > 3, since for high angular momenta of

the valence electron the probability of being close to the nucleus becomes small [9]. The

energy level structure for 87Rb then takes the same form as in the hydrogen case

En,j,l = −hc RRb

(n− δ(n, j, l))2
= −hc RRb

(n∗)2
(1.4)

with a modified Rydberg constant RRb = R∞/(1+me/mnucleus) which is the standard Ryd-

berg constant corrected for the effective mass of the valence electron and the Rubidium

nucleus.

A consequence of the valence electron being in a Rydberg state is that, since the electron

is, on average, further away from the nucleus, the size of the atom is increased up to

1000’s of Bohr radii, which in dense cold atomic samples can even exceed the average

interatomic distance. Furthermore, as the Coulomb potential exerts a smaller force on

the valence electron, the further it is away from the nucleus the weaker the electron is

bound and the polarisability is increased.

One of the most important properties of Rydberg atoms are the strong long-range in-

teractions between them. The interaction is represented by the dipole-dipole operator

[14]

V̂dd =
~̂d1 · ~̂d2
R3

−
3
(
~̂d1 · ~R

)(
~̂d2 · ~R

)
R5

(1.5)
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Figure 1.1: The experimental set-up: the cloud of ultracold atoms (red dot) is trapped
in a vacuum chamber by a dipole trap. The field plates apply a static electric fields which
can be used to ionise the Rydberg atoms. The multi-channel plate (MCP) can detect
the ions. The microwave field, the probe- and coupling-lasers are used for excitation of

Rydberg states.

where ~̂d1,2 are the dipole operators acting on two interacting atoms 1 and 2 respectively,

and ~R is the vector separating them. The large transition dipole moments between Ryd-

berg states lead to these strong interactions, which form the cornerstone of experiments

with ultracold Rydberg gases. In experiments with ultracold atoms in states with low

principal quantum number, even the interactions between neighbouring atoms is typi-

cally negligibly small. In Rydberg gases, however, the long-range interactions dominate

the behaviour of the system. Furthermore, the interaction strength and character can

be tuned by changing the interacting states or applying external fields [9], such that

Rydberg gases are particularly suited to study strongly interacting quantum systems.

1.2 The system

The experiment of interest is an ultracold atom experiment using 87Rb-atoms in Rydberg

states to study many-body phenomena in strongly interacting quantum systems [15]. The

experimental set-up is schematically illustrated in figure 1.1. The goal of the experiment

is to model spin systems by using Rydberg-S- and -P-states as up- and down-spins and

to study their interactions. In order to study interesting phenomena involving atoms in

Rydberg states, these states have to be excited first.

To excite an atom from a ground-S-state to a Rydberg-P-state the dipole selection rules

for atomic transitions allow for either a one- or a three-photon excitation. The advantage

of using a three-photon excitation lies in the flexibility of the laser system to address both

Rydberg-S- and -P-states. While a one-photon excitation from one S-state to another is

dipole forbidden, the three-photon excitation apparatus can be used to excite S-states
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Figure 1.2: Schematic structure for the 87Rb-atom levels coupled to the applied laser
fields. The states are split by an external magnetic field via the Zeeman effect into
fine- or hyperfine-states respectively. For the two lower state manifolds the hyperfine
structure can be resolved, whereas for the highly excited states the hyperfine states are

nearly degenerate and only the fine structure states are separated.

by simply tuning the two lower laser couplings on resonance with this transition while

turning the third coupling off. Therefore, a three-photon laser system is the best suited

apparatus to prepare such a spin model system for investigation.

The state structure that is considered here is shown in figure 1.2. The atomic states are

coupled by lasers with a very narrow bandwidth. This set of states was chosen because

the intermediate state manifolds are well-separated from other, unwanted, state mani-

folds, such that the laser couplings may be tuned off resonance with respect to the state

transitions without hitting other resonances. The atomic cloud is initially prepared in

the ground state
∣∣5S1/2,F = 2,mF = +2

〉
and coupled to the excited state

∣∣5P3/2,F = 3
〉
.

By applying a static magnetic field, the different hyperfine states are separated in energy

by the Zeeman effect and hence are no longer degenerate. σ+-polarised light is used to

address only one particular hyperfine state in the 5P3/2-manifold: because the atoms are

initially prepared in the mF = +2 ground state the laser can only couple this state to

the mF = +3 excited state. The system of these two hyperfine states is coupled to two

other states with a high principal quantum number n ≈ 30 to 100. For such states the

Zeeman splitting of the hyperfine states is small compared to their linewidth; therefore

the total electronic angular momentum quantum number J is a good quantum number

to characterise these states. The
∣∣5P3/2,F = 3,mF = 3

〉
state can only be coupled to

the state with mJ = +1/2 in the |nS, J = 1/2〉 manifold. In order to maximise coupling

efficiency, the laser coupling is σ−-polarised. The frequency of the last coupling is in the

microwave regime, and, unfortunately, the polarisation of this radiation is not controlled
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|p〉

|s〉

|e〉

|g〉

νp

νmw

νc

∆p

∆s

∆e

γ

Figure 1.3: Simplified four-level system neglecting all unpopulated and uncoupled
states leaving only |g〉 =

∣∣5S1/2,F = 2,mF = +2
〉
, |e〉 =

∣∣5P3/2,F = 3,mF = +3
〉
, |s〉 =

|nS, J = 1/2,mJ = +1/2〉 and |p〉 = |nP, J = 3/2,mJ = +3/2〉. The states are coupled by
light fields with frequencies νp, νc, νmw for the probe-, coupling- and microwave-field1.
The state energies are Ec = ~ωc, Es = ~ωs, Ep = ~ωp, with the ground-state energy
set to zero for convenience. The respective n-photon detunings are ∆e = νp − ωe,
∆s = (νp + νc) − ωs and ∆p = (νp + νc + νmw) − ωp. The excited state has a short
lifetime compared to the other states, which can be assumed to be metastable, and

spontaneously decays with a rate γ.

in the used experimental set-up. However, different fine structure states can neverthe-

less be addressed individually through their energy splitting by tuning the microwave

coupling on resonance to one particular transition.

To describe the excitation dynamics for such a system, in principle the time evolution

of all states in the four manifolds would have to be included in the calculation. By

introducing Zeeman splittings and coupling only to a single state from each manifold,

the system can be considerably simplified by neglecting all unpopulated and uncoupled

states, allowing to reduce the problem to a four-level ladder-type system, as depicted in

figure 1.3.

The decay rates of the reduced four-level system are shown in table 1.2. While the ground

state can be assumed to be stable, the excited state is decaying very rapidly compared

to the highly excited states. Therefore, for most purposes, the highly excited states |s〉
and |p〉 can be assumed to be metastable on the experimental timescale.

In order to excite the P-state in a controlled way, it is desirable to have an excitation

process by which only the P-state is addressed while the population transfer from the

ground- to the intermediate-states |e〉 and |s〉 is kept minimal. This can be achieved by

tuning the three-photon system off resonance with respect to the levels that should not
1Throughout this thesis the Greek letters ν and ω are both used to denote the radial frequency (i.e.

including 2π) of light fields, which might differ from the convention in other texts.
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state lifetime (µs) decay rate (MHz)

|g〉 ∞ 0
|e〉 0.165 6.067
|s〉 > 30 < 0.03
|p〉 > 30 < 0.03

Table 1.2: Decay properties of the reduced four-level system. The exact values for the
lifetime/decay rate for |s〉 and |p〉 depend on the chosen principal quantum number.

be populated and resonant to the |g〉 ↔ |p〉 transition, i.e. |∆e|, |∆s| � |∆p|. Thereby

population transfer to the intermediate states can be suppressed, and the main process

occurring is the excitation from the ground- to the P-state.

The goal of this thesis is to investigate and understand this system in order to opti-

mise population transfer to the P-state. In this chapter, the basic principles needed for

describing such a four-level system interacting with applied laser fields are presented.

1.3 Atoms in external radiation fields

At the heart of the excitation process lies the interaction between the atom and the

applied lasers fields. In this section the simplified case of a single two-level atom in an

external laser light field, which is otherwise isolated from its environment, is discussed;

this can later be generalised to the case of several states and couplings. The treatment

of atom-light interactions presented in this section is based on chapter 5 of D. Steck’s

Quantum and Atom Optics [16]. The two atomic states in this simplified picture are

called the ground state |g〉 and excited state |e〉, with an energy difference E = Ee−Eg =
~ωe − ~ωg = ~ω, as shown in figure 1.6. A laser light field with a frequency ωL close to

the atomic resonance is applied. A strong coherent light field with a small bandwidth

|e〉

|g〉

∆

Ω, ωL

Figure 1.4: Level structure for a two-level atom with a ground- and an excited-state
with an energy difference E = ~ω interacting with a light field of frequency ωL and

detuning ∆ = ωL − ω. Ω is the Rabi frequency of the laser coupling.
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produced by a laser can be treated as a classical monochromatic electromagnetic field:

~E (~r, t) = ~E (~r, t) e−i(ωLt−~k~r) + ~E (~r, t)
∗
ei(ωLt−~k~r) (1.6)

where ~k is the light wavevector and ~E (~r, t) the in time and space slowly varying envelope

function, which can be set constant for most purposes.

The Hamiltonian for the atom-light interaction in the dipole approximation can be writ-

ten as [17]:

ĤAL = −~̂d · ~E = −d̂ · E (1.7)

where ~̂d = e~̂r is the atomic dipole operator and d̂ = ~̂d · ~ε is its projection onto the

polarisation direction ~ε of the electric field with ~E (~r, t) = E (~r, t)~ε. It can be written as:

d̂ =
∑
n,m

|n〉 〈n| d̂ |m〉︸ ︷︷ ︸
µn,m

〈m| =
∑
n,m

µn,m |n〉 〈m| (1.8)

with µn,m being the dipole matrix element between states |n〉 and |m〉. Since d̂ is

Hermitian, the dipole matrix elements obey µm,n = µn,m
∗. In the case of the two-level

atom the dipole operator reads:

d̂ = µge |g〉 〈e|+ µeg |e〉 〈g| . (1.9)

Setting the ground-state energy to zero, i.e. ωg = 0, the free atomic Hamiltonian is

ĤA = ~ω |e〉 〈e| and the total Hamiltonian

Ĥ = ĤA + ĤAL = ~ω |e〉 〈e| − (µge |g〉 〈e|+ µeg |e〉 〈g|) ·
(
Ee−iωLt + E∗eiωLt

)
. (1.10)

Here the spatial dependence of the electric field was neglected, as for optical and mi-

crowave transitions the wavelength of the light, λ > 400 nm, is much larger than the size

of the atom which is of the order of 1Å = 10 nm. This means that for the atom the light

field essentially looks like a spatially constant field oscillating in time.

Rotating wave approximation (RWA): The system (1.10) can be transformed us-

ing a unitary transformation as long as it obeys the same equation of motion, i.e. the

Schrödinger equation

i~
d

dt
|ψ〉 = Ĥ |ψ〉 . (1.11)
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Let Û(t) be the time-dependent unitary transformation operator, such that the state

vector transforms according to |ψ〉 = Û(t) ˜|ψ〉. In order for ˜|ψ〉 to obey an equation of

motion of the form (1.11), the Hamiltonian operator needs to be transformed as

Ĥ −→ H̃ = Û†ĤÛ− i~ Û†
(

d

dt
Û

)
. (1.12)

The system can be transformed in the, so called, rotating frame by a unitary transfor-

mation represented by the operator

Û(t) = exp (−iωLt |e〉 〈e|) (1.13)

For the transformation of the Hamiltonian (1.10) one finds

H̃ = − ~∆ |e〉 〈e| −

 1.︷ ︸︸ ︷
µgeE∗ |g〉 〈e|+

2.︷ ︸︸ ︷
µegE |e〉 〈g|


−

µgeEe−2iωLt |g〉 〈e|︸ ︷︷ ︸
3.

+µegE∗e2iωLt |e〉 〈g|︸ ︷︷ ︸
4.

 (1.14)

where the detuning is defined as ∆ := ωL − ω. It indicates how far off resonance the

laser frequency is. The last two terms in equation (1.14) are called antiresonant terms

and are very rapidly oscillating at frequency 2ωL. Hence, their effect averages to zero on

timescales larger than 1/2ωL. Since atomic transitions happen on much larger timescales

these terms can safely be neglected. Treating also the light field quantum mechanically

one can show that the four terms in the atom-light Hamiltonian correspond to four

different processes [18]:

1. |e〉 −→ |g〉 while emitting a photon

2. |g〉 −→ |e〉 while absorbing a photon

3. |e〉 −→ |g〉 while absorbing a photon

4. |g〉 −→ |e〉 while emitting a photon.

This makes clear that the first two terms are the dominant processes near resonance.

The total Hamiltonian in the rotating frame and RWA reads

H̃RWA = − ~∆ |e〉 〈e| − ~ (Ω∗ |g〉 〈e|+Ω |e〉 〈g|) (1.15)

with the Rabi frequency Ω := Eµeg/~. The Rabi frequency is a measure of how strong the

laser field and the atom interact. It depends both on the dipole matrix element, which
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is a property of the atomic transition, as well as on the field strength of the laser.

From now on the system is described in the rotating frame and RWA dropping the

tildes and RWA-subscripts.

For a state |ψ(t)〉 = cg(t) |g〉 + ce(t) |e〉 the differential equations for the ground- and

excited-state coefficients can easily be found by applying the Schrödinger equation:

ċg = 〈g | ∂t |ψ〉 =
〈
g

∣∣∣∣ 1i~Ĥ
∣∣∣∣ψ〉 = iΩ∗ce(t) (1.16a)

ċe = 〈e | ∂t |ψ〉 =
〈
e

∣∣∣∣ 1i~Ĥ
∣∣∣∣ψ〉 = i∆ce(t) + iΩcg(t). (1.16b)

Assuming the atom to be initially in the ground state, the general solution to this set of

equations is [19]

cg(t) = e
∆
2
t

(
cos
(
Ω̄t
)
− i

∆

2Ω̄
sin
(
Ω̄t
))

(1.17a)

ce(t) = ie
∆
2
tΩ

Ω̄
sin
(
Ω̄t
)

(1.17b)

with the generalised Rabi frequency Ω̄ =
√

Ω2 + (∆/2)2.

The qualitative response of the atom on the applied laser field depends on how close

the laser is tuned to resonance, i.e. on the detuning. In the excitation scheme both

resonant and off-resonant atomic response are used to efficiently excite atoms to the

P-state; therefore, both cases need to be discussed here.

1.3.1 Resonant behaviour: Rabi oscillations

This system of equations has a particularly simple solution in the case of no detuning,

i.e. ∆ = 0, assuming |ψ(t = 0)〉 = |g〉:

cg(t) = cos (|Ω|t) (1.18a)

ce(t) = i
Ω

|Ω|
sin (|Ω|t) (1.18b)

in which the population oscillates between |g〉 and |e〉, as shown in figure 1.5. These

oscillations are called Rabi oscillations or Rabi floppings. They can be used to completely

transfer the population from the ground- to the excited-state by applying a laser field for

the time of a quarter oscillation period. By raising the applied laser intensity the Rabi

frequency is increased and the time needed for a full population transfer is decreased.
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Figure 1.5: Rabi oscillations between ground- and excited-state: the time axis is given
in units of T = 2π/Ω.

1.3.2 Off-resonant behaviour: AC-Stark shift

When the light field is far off-resonant with respect to the atomic transition, i.e. |∆| � Ω,

it does not induce oscillations between the states. Nevertheless, the atom is influenced

by the light field as it causes the atomic levels to shift in energy. This energy shift can

be derived in two different ways.

Adiabatic elimination: First it is assumed, that initially all the population is in the

ground state. In the limit of a large detuning, i.e. |∆| � Ω, most of the population stays

in the ground state and the ground-state coefficient can be approximated as cg(t) ≈ 1.

By inserting this into the differential equation for the excited-state coefficient (1.16b) a

simple solution for its time evolution can be found [20]:

ce(t) = −Ω

∆

(
1− ei∆t

)
. (1.19)

There are two terms: one constant term and one term that rapidly oscillates at frequency

∆. Over timescales larger than 1/∆, this term averages to zero and in order to understand

the slow dynamics of the system it can be neglected:

ce(t) ≈ −Ω

∆
. (1.20)

Inserting (1.20) into the differential equation for the ground-state coefficient(1.16a) its

differential equation becomes:

ċg = −i |Ω|
2

∆
cg. (1.21)
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Comparing this differential equation to the free time evolution of an isolated state |g〉
with an energy Eg = ~ωg and a Hamiltonian for the free evolution Ĥg = ~ωg |g〉 〈g|:

ċg = −iωg cg (1.22)

it can be concluded that the ground state |g〉 off-resonantly coupled to |e〉 evolves in time

as if it had an energy ∝ |Ω|2/∆. This energy shift due to the applied light field is called

light shift or AC-Stark shift. From a similar calculation under the assumption ce ≈ 1 it

can be deduced that the excited state is shifted in the opposite direction by the same

energy difference.

Dressed-state picture: The other way to understand these light induced shifts is to

consider the change of the eigenstates due to atom-light coupling. The states |g〉 and |e〉
are eigenstates of the free Hamiltonian. It can be written in matrix form in the basis

|g〉 = (1, 0)T, |e〉 = (0, 1)T as

ĤA =

(
0 0

0 ~ω

)
. (1.23)

Introducing interaction with a light field changes the total Hamiltonian to (1.10), which

changes the off-diagonal elements in the matrix representation in the rotating frame and

RWA:

Ĥ = −~

(
0 Ω

Ω∗ ∆

)
(1.24)

for which the two states |g〉 and |e〉 are no longer eigenstates. The new eigenstates of

the full Hamiltonian are called dressed states, which in general are a superposition of |g〉
and |e〉:

|d1〉 =
1

N1

(
−∆+

√
∆2 + 4Ω2

2Ω
|g〉+ |e〉

)
(1.25a)

|d2〉 =
1

N2

(
−∆−

√
∆2 + 4Ω2

2Ω
|g〉+ |e〉

)
(1.25b)

where N1 and N2 are normalisation factors and Ω was assumed to be real. The new

eigenenergies are:

E1 = − ~
2

(
∆−

√
∆2 + 4Ω2

)
(1.26a)

E2 = − ~
2

(
∆+

√
∆2 + 4Ω2

)
. (1.26b)
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|e〉
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|de〉

|dg〉

S

S

Figure 1.6: Energy shift of the atomic levels due to off-resonant light coupling by the
AC-Stark shift S with ∆ > 0 in the far detuned limit |∆| � Ω.

For a large detuning however, the off-diagonal elements in (1.24) are small compared

to the diagonal elements and therefore the dressed states are approximately the old

eigenstates with a small admixture of the other state:

|d1〉 ≈ |dg〉 =
1

N ′
1

(
|g〉 − Ω

∆
|e〉
)

(1.27a)

|d2〉 ≈ |de〉 =
1

N ′
2

(
|e〉+ Ω

∆
|g〉
)

(1.27b)

with N ′
1, N ′

2 being the appropriate normalisation factors. The eigenenergies in this limit

are:

Eg =0 + ~
Ω2

∆︸︷︷︸
S

(1.28a)

Ee = − ~∆− ~
Ω2

∆︸︷︷︸
S

(1.28b)

which can be interpreted as the altered ground- and excited-state energies due to the

AC-Stark shift S.

1.4 Incoherent phenomena

The four-level system under consideration involves the rapidly decaying excited state |e〉,
as shown in figure 1.3. In order to account for the influence of this decay and to determine

under which conditions it is relevant, a way to describe the effect of spontaneous emission

is needed. Unfortunately, the simple approach of describing the system by Hermitian

operators acting on Hilbert space vectors does not suffice and a different description is

needed.
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1.4.1 Density operator

Hilbert space vectors are one, but not the only, way to represent the state of a quantum

system, and for many situations there are more useful ways to do it. In order to describe

incoherent processes, such as spontaneous emission, the atom can be represented in terms

of the density operator [21]

ρ̂ =
∑
i

pi |ψi〉 〈ψi| (1.29)

where pi denotes the probability of the atom to be in the quantum mechanical state |ψi〉.
If there is a basis for which the density operator can be written as ρ̂ = |φ〉 〈φ| for a single

state vector |φ〉 the system is said to be in a pure state. Else, it is said to be in a mixed

state.

By inserting a complete set of states 1 =
∑

n |n〉 〈n| in some orthonormal basis {|n〉}
another way to represent the density operator can be found:

ρ̂ = 1 ρ̂ 1 =
∑
n,m

〈n | ρ̂ |m〉︸ ︷︷ ︸
ρnm

|n〉 〈m| (1.30)

where ρnm is called the density matrix. The diagonal elements ρnn are called populations

and denote the probabilities of finding the system in the basis state |n〉; whereas the

off-diagonal elements are called coherences, which are a measure for the coherence of the

superposition. It has to be noted that even though the density matrix and the density

operator are different objects, these terms are often used interchangeably. Two important

properties of the density operator are:

• ρ̂ = ρ̂† from which follows that ρij = ρji
∗

• Tr[ρ̂] :=
∑

n 〈n | ρ̂ |n〉 =
∑

n ρnn = 1 which accounts for unitarity.

Furthermore the expectation value of a given operator Ŝ can be written as〈
Ŝ
〉
= Tr

[
ρ̂Ŝ
]
. (1.31)

1.4.2 Master equation

In this subsection the differential equation governing the time evolution of the density

operator (1.29) under the influence of spontaneous emission is presented; it is based on

chapters 4.5 and 11.5 in D. Steck’s Quantum and Atom Optics [16].
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In general the time evolution of the density operator for a system described by a Hamil-

tonian Ĥ is given by the von-Neumann equation [17]

˙̂ρ =
∑
i

pi

 ˙|ψi〉︸︷︷︸
1
i~ Ĥ|ψi〉

〈ψi|+ |ψi〉 ˙〈ψi|︸︷︷︸
− 1

i~ Ĥ〈ψi|

 =
1

i~

[
Ĥ, ρ̂

]
. (1.32)

Spontaneous emission can be modelled by considering the atom to be coupled to a field

of randomly fluctuating background radiation given by the Hamiltonian

Ĥ = ĤS + ĤR + ĤSR (1.33)

where the total system, called the universum, is separated into the system—in this case

the atom—and the reservoir—in this case the background radiation. ĤS and ĤR are

the free system- and reservoir-Hamiltonians respectively, and ĤSR describes the coupling

between them. As the system is not isolated from its environment anymore, such systems

are also called open quantum systems.

For the background radiation it can be assumed that the effect of the change of the

system state on the reservoir state can be neglected. This means that it is assumed

that the reservoir does not significantly change by the interaction with the atom. Such

reservoirs are called Markovian. This is often referred to as the reservoir not having a

memory of the previous interaction. One can include the effects of such a reservoir on

the atom by an additional term in the equation of motion (1.32) [22]:

˙̂ρS =
1

i~

[
ĤS, ρ̂S

]
+

ˆ̂
L [ρ̂S] (1.34)

where ˆ̂
L [ρ̂] is the Lindblad superoperator [23]. Equation (1.34) is called the master

equation. It has to be noted that equation (1.34) is acting on the system density operator

only, which can be obtained from the total density operator by tracing over the reservoir

degrees of freedom:

ρ̂S =
∑
r

〈r | ρ̂tot | r〉 = TrR [ρ̂tot] (1.35)

where the sum runs over a complete set of reservoir states {|r〉}. The explicit form of

the Lindblad superoperator for spontaneous emission depends on the level structure of

the atom. In general it can be written as

ˆ̂
L [ρ̂S] = −

∑
k

γk
2

(
L̂†
kL̂kρ̂S + ρ̂SL̂

†
kL̂k − 2L̂kρ̂SL̂

†
k

)
(1.36)
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where L̂k is the Lindblad operator for a given decay channel k.

For a simple two-level atom the terms in equation (1.33) are given from the James-

Cummings model [24]

ĤS = − ~∆ |e〉 〈e| (1.37)

ĤR = ~
∑
j

(
â†j âj +

1

2

)
(1.38)

ĤSR = − ~
∑
j

(
gj âj |e〉 〈g|+ g∗j â

†
j |g〉 〈e|

)
(1.39)

where â†j , âj are the creation and annihilation operators for the background radiation

light field for different light field modes j, and gj are the coupling constants between

the modes and the atomic transition. In the zero temperature limit the master equation

then reads:

˙̂ρS =
1

i~

[
ĤS, ρ̂S

]
− γ

2
(|e〉 〈e| ρ̂S + ρ̂S |e〉 〈e| − 2 |g〉 〈e| ρ̂S |e〉 〈g|) (1.40)

where γ is the spontaneous decay rate for decay from the excited- to the ground-state,

for which the corresponding Lindblad operator is |g〉 〈e|.

If laser driving is included in the system Hamiltonian as in (1.15) the form of the Lindblad

superoperator does not change under the assumption that the Rabi frequency is much

smaller than the energy splitting between the two states, i.e. Ω � ω [25]. This is true

for all experimental situations that are considered here, as energy splittings are of the

order of 100THz whereas the Rabi frequencies are usually of the order of a few MHz.

Hence, equation (1.40) also holds for system Hamiltonians of the form (1.15).

The additional Lindblad term in the von-Neumann equation effectively damps the off-

diagonal elements of the density matrix and thereby reduces the coherence in the system.

This means that an atom which is initially in a coherent superposition evolves to a com-

pletely incoherent superposition due to the interaction with the environment. Therefore,

spontaneous emission is said to be a process of decoherence.

1.4.3 Optical Bloch equations

By projecting the master equation onto a given basis {|n〉} one can obtain the differential

equations for the density matrix in that basis:

ρ̇nm =
〈
n
∣∣∣ ˙̂ρ ∣∣∣m〉 . (1.41)
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For an n-level atom these, so called, optical Bloch equations (OBEs) are a set of 1/2(n2+n)

coupled differential equations. Together with the conditions

ρnm = ρ∗mn (1.42)∑
n

ρnn =1 (1.43)

accounting for the Hermiticity of the density matrix and unitarity, these equations de-

termine the time evolution of the density matrix.

For a laser driven two-level atom the optical Bloch equations are:

ρ̇gg = γρee − iΩ∗ρeg + iΩρge (1.44a)

ρ̇ee = − γρee + iΩ∗ρeg − iΩρge (1.44b)

ρ̇ge = − γ

2
ρge − i∆ρge − iΩ∗(ρee − ρgg). (1.44c)

The terms in the OBEs can be grouped according to different processes they are associ-

ated with: the terms with the Rabi frequency and detuning as prefactors determine the

oscillatory behaviour of the populations; whereas the terms containing the decay rate

cause population to be transferred from the excited- to the ground-state.

1.4.4 Finite laser linewidth

So far it was assumed that the atoms interact with a perfect single-mode light source.

However, the lasers used for excitation in the experiment are not perfectly stable in

frequency and may show a finite spectral width, also called linewidth, over the duration

of the coupling to the system. The effect of this finite linewidth on the time evolution of

the atom is to increase the damping of the off-diagonal density matrix elements, while

not affecting the state populations [8, 26]. Therefore, the finite laser linewidth acts as

an additional decoherence process, which can be modelled as an extra Lindblad term in

the master equation (1.34):

˙̂ρS =
1

i~

[
ĤS , ρ̂S

]
+

ˆ̂
L [ρ̂S ] +

ˆ̂
Llaser [ρ̂S ] (1.45)

where ˆ̂
Llaser accounts for the dephasing due to the finite laser linewidth. However, since

laser linewidth for the lasers currently used in the experiment is only of the order of a

few kHz, it is neglected throughout the rest of this thesis.
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Figure 1.7: (a) Standard 2-level-system absorption, (b) 3-level EIT coupling scheme.
The light fields are called probe- and coupling-field.

1.5 Electromagnetically induced transparency

Optical detection is one of the most precise imaging tools to observe dynamics in strongly

interacting many-body quantum systems. Atoms in the ground state can usually be

detected using the absorption imaging technique when a suitable closed cycled transition

scheme is available. Being excited states with multiple decay channels, Rydberg atoms

do not fulfil this requirement, and another method is needed to optically detect them.

The imaging technique used in this experiment exploits the effect of electromagnetically

induced transparency (EIT). In this section it is briefly outlined how EIT is induced in

an ultracold gas.

Light with a frequency close to resonance of an atomic transition |g〉 ↔ |e〉, as shown in

figure 1.7a, propagating through an atomic medium of density % experiences a complex

susceptibility [8]

χ(νp) =
%|µeg|2

~ ε0
ρss
eg(νp)

Ωp
(1.46)

where µeg is the dipole matrix element for the |g〉 ↔ |e〉 transition, ε0 is the vacuum

permittivity, ρss
eg denotes the steady-state solution to the coherence between |g〉 and |e〉,

and νp is the light frequency. The susceptibility is linked to the optical properties of the

atomic medium via the refractive index [8]

n =
√
1 + χ ≈ 1 +

χR + iχI

2
(1.47)
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where χR and χI are the real and imaginary parts of the susceptibility respectively. The

absorption of the medium is proportional to the imaginary part χI of the susceptibility;

whereas the refraction is proportional to the real part χR.

In the following two cases are considered: absorption in a simple two-level system, as

shown in figure 1.7a, and absorption in a three-level EIT-system where the excited state

is additionally coupled to a metastable Rydberg state |ns〉, as depicted in figure 1.7b.

The steady-state solution for ρeg in a singly coupled system, as shown in figure 1.7a, is

given by [27]:

ρss
eg,2lvl =

−iΓgeΩp
2|Ωp|2 + |Γge|2

. (1.48)

The steady-state solution for ρeg in a three-level system, as depicted in figure 1.7b, can

be calculated from the optical Bloch equations for a three-level system:

ρ̇gg = + γρee − iΩpρge + iΩ∗
pρeg (1.49a)

ρ̇ee = − γρee + iΩpρge − iΩ∗
pρeg − iΩcρes + iΩ∗

cρse (1.49b)

ρ̇ss = + iΩcρes − iΩ∗
cρse (1.49c)

ρ̇ge = −
(γ
2 + i∆e

)︸ ︷︷ ︸
Γge

ρge + iΩ∗
p (ρee − ρgg)− iΩcρgs (1.49d)

ρ̇gs = − i∆s︸︷︷︸
Γgs

ρgs + iΩ∗
pρes − iΩ∗

cρge (1.49e)

ρ̇es = −
(γ
2 + i (∆s −∆e)

)︸ ︷︷ ︸
Γes

ρes + iΩ∗
c (ρss − ρee) + iΩpρgs (1.49f)

where γ denotes the decay rate of the rapidly decaying level |e〉, ∆e = νp − ωe and

∆s = (νp+ νc)−ωs are the n-photon detunings at levels |e〉 and |s〉 respectively, and Ωp

and Ωc are the probe- and coupling-Rabi frequency respectively.

For EIT to occur, three conditions have to be met: the Rydberg state has to have a

much smaller decay rate than the intermediate one, there should be no direct dipole

allowed coupling between the ground- and the Rydberg-state and, finally, the coupling

Rabi frequency needs to be much larger than the probe Rabi frequency, i.e. Ωp � Ωc.

In the steady state the density matrix does not change in time, and hence the time

derivatives in (1.49) may be set to zero. Furthermore, since Ωp � Ωc, the population

can be assumed to stay mostly in the ground state, i.e. ρgg ≈ 1 [28]. The steady-state
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Figure 1.8: Absorption and refraction for two-level- (a) and three-level-absorbers (b)
with Ωc = 2Ωp, γ = 6Ωp and νc resonant on |e〉 ↔ |s〉 transition, scaled by the two-level

absorption at resonance χres
2lvl

solution for ρge is

ρss
ge =

−iΩp

Γge + |Ωc|2
(
Γgs +

|Ωp|2
Γes

)−1 (1.50)

from which ρss
eg is given by ρss

eg = (ρss
ge)

∗.

In figure 1.8 the absorption and refraction for both cases are shown. For a two-level

absorber, the absorption profile has the well-known Lorentzian shape. However, when the

coupling laser is turned on, the medium is rendered transparent at the probe resonance.

This effect is known as electromagnetically induced transparency (EIT) [28].
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Chapter 2

Effective two-level description

As the four-level system is relatively complicated, there are many parameters needed in

order to describe the dynamics: Ωp, Ωc, Ωmw, ∆e, ∆s, ∆p and γ. It is possible to use the

master equation formalism, discussed in section 1.4, and generalise it to the four-level

system, depicted in figure 1.3, to find the optical Bloch equations; in principle these

would suffice to describe the excitation process of interest. However, the OBEs for such

a system are a complicated set of coupled differential equations, as shown in the next

chapter. On the one hand, because there is no general analytical solution, these OBEs

have to be solved numerically. On the other hand, this set of OBEs is too complicated

to yield an intuitive understanding of the excitation process. It would be preferable to

have a simpler description in terms of fewer parameters.

In this chapter it is shown, that the excitation is performed in a regime for which the

behaviour of the four-level system can be mainly described by only two effective param-

eters incorporating the complexity of the four-level dynamics. As the laser couplings in

the four-level system are tuned far off resonance with respect to the intermediate levels,

these states are only marginally populated. Therefore, the dynamics of the four-level

system is expected to be dominated by the behaviour of the outer states |g〉 and |p〉. In

the following it is shown, how the description of the four-level system can be simplified

into an effective two-level description. This allows for an intuitive understanding of the

system by thinking about the excitation dynamics in terms of the well-known two-level

formulation.

To simplify things even further, first, the case of a two-photon/three-level excitation, as

shown in figure 2.1a, is discussed. This case has been extensively studied in the context

of Rydberg excitation of S- and D-states [9, 29–31]. Here, the laser couplings are also as-

sumed to be tuned far off-resonance with respect to the intermediate level, neglecting the

21
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Figure 2.1: (a) Two-photon excitation level diagram. (b) Three-photon excitation
level diagram.

influence of decay. Subsequently, this description is generalised to a three-photon/four-

level excitation (figure 2.1b), and lastly the effects of the rapid decay of the excited state

are discussed.

2.1 Two-photon excitation

When neglecting the decay of the intermediate level the density matrix formulation is

not needed, and the system can be described in terms of a state vector

|ψ(t)〉 = cg(t) |g〉+ ce(t) |e〉+ cs(t) |s〉 . (2.1)

The Hamiltonian for such a system is given by the generalisation of equation (1.15) to

the three-level case with two laser drivings

Ĥ = − ~∆e |e〉 〈e| − ~∆s |s〉 〈s|

− ~
(
Ωp |e〉 〈g|+Ω∗

p |g〉 〈e|
)

− ~ (Ωc |s〉 〈e|+Ω∗
c |e〉 〈s|) (2.2)

which is given in the appropriate rotating frame and RWA. The detunings are defined

as the respective n-photon detunings ∆e := νp − ωe and ∆s := (νp + νc)− ωs. The first

two terms describe the free evolution of the atom; whereas the remaining terms describe

the atom-light interaction in the semiclassical approach.
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The set of differential equations governing the time evolution of the atomic state coeffi-

cients ci(t), i ∈ {g, e, s}, can easily be found using the Schrödinger equation

ċg =
1

i~

〈
g
∣∣∣ Ĥ ∣∣∣ψ〉 = iΩ∗

pce (2.3a)

ċe =
1

i~

〈
e
∣∣∣ Ĥ ∣∣∣ψ〉 = i∆ece + iΩpcg + iΩ∗

ccs (2.3b)

ċs =
1

i~

〈
s
∣∣∣ Ĥ ∣∣∣ψ〉 = i∆scs + iΩcce. (2.3c)

For the three-level system, as in the four-level case, it is assumed that the laser cou-

plings are tuned far off resonance with respect to the intermediate level |e〉, i.e. |∆e| �
Ωp,Ωc, |∆s|. The effective two-level formulation of this three-level system is motivated

by the observation that the time evolution of the system can be separated into two dis-

tinct timescales: the fast evolution of the intermediate state |e〉 and the slow evolution

of the outer states |g〉 and |s〉. The intermediate population rapidly oscillates on the

timescale given by the intermediate detuning 1/∆e. Assuming that the fast dynamics

does not influence the dynamics on the slower timescale, it can be approximated that

the intermediate state immediately reaches equilibrium, i.e. its time-derivative can be

set to zero to lowest order in Ωp,c

∆e
[20]:

ce = −Ωpcg +Ω∗
ccs

∆e
. (2.4)

The intermediate population essentially adiabatically follows the time evolution of |g〉
and |s〉. This makes intuitively sense, as there is no resonant coupling to the intermediate

state which could induce coherent population transfer. Furthermore, the intermediate

state coefficient is suppressed by the small factors Ωp,c/∆e which agrees with the expected

marginal population of this state.

Equation (2.4) can now be substituted back into equations (2.3) to find

ċg = − i
|Ωp|2

∆e
cg − i

Ω∗
pΩ

∗
c

∆e
cs (2.5a)

ċs = i

(
∆s −

|Ωc|2

∆e

)
cs − i

ΩpΩc
∆e

cg (2.5b)

where now the system can be expressed in terms of the ground- and S-state only. This

procedure is called adiabatic elimination. This set of two coupled differential equations

for the time evolution of the ground- and S-state can now be compared to the differential

equations describing a two-level atom coupled to a single field (1.16). The terms coupling

both differential equations together suggest the definition of the effective Rabi frequency

Ωeff := −ΩpΩc
∆e

. (2.6)
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Moreover, there are additional prefactors for the free evolution of the ground- and excited-

state evolution that can be identified as the AC-Stark shifts. However, the effective

two-level system (2.5) differs from the real two-level system (1.16) as the Stark shifts in

general do not have the same magnitude at both levels. Therefore, the AC-Stark shifts

at levels |g〉 and |s〉 respectively are defined as:

Sg :=
|Ωp|2

∆e
(2.7)

Ss :=
|Ωc|2

∆e
(2.8)

which, together with (2.6), can be used to simplify the differential equations:

ċg = − iSg cg + iΩ∗
eff cs (2.9a)

ċs = i (∆s − Ss) cs + iΩeff cg. (2.9b)

By applying a transformation

cg,s −→ cg,s e
iSgt (2.10)

which is equivalent to shifting the energy of the ground state by the amount of its

AC-Stark shift, such that the ground-state energy becomes the zero-point energy again,

the set of equations takes the form:

ċg = iΩ∗
eff cs (2.11a)

ċs = i∆effcs + iΩeff cg (2.11b)

with the effective detuning

∆eff := ∆s + Sg − Ss. (2.12)

Comparing this to the set of differential equations for an off-resonant two-level atom

(1.16), one finds that the system of the two states |g〉 and |s〉 behaves like a two-level

atom with the substitutions Ω −→ Ωeff and ∆ −→ ∆eff, as depicted in figure 2.2a. From

now on, the resonance of the bare states is called two-photon resonance and its detuning,

the two-photon detuning, to be distinguished from the effective detuning and effective

resonance.

Two important facts have to be noted at this point. Firstly, as the effective two-level
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|s〉

|g〉

∆eff

Ωeff

(a)

|s〉

|g〉

Ss

Sg

Ωeff

(b)

|s〉

|g〉
Sg

Ωc

Ωp

(c)

Figure 2.2: (a) effective two-level scheme (b) AC-Stark shifts Sg an Ss induced by laser
couplings cancel each other out for Ωp ≈ Ωc, where effective detuning ∆eff coincides
with two-photon detuning ∆s (= 0 here) (c) for Ωp � Ωc the ground-state Stark shift
is dominant and the effective resonance is red shifted compared to the two-photon

resonance

system in the form (2.11) follows exactly the same differential equations as the real two-

level system, the analytical solution and the predictions for the behaviour on effective

resonance and in the effectively off-resonant case, as discussed in section 1.3, can readily

be adopted from the real two-level case. Secondly, the behaviour in this effective de-

scription depends solely on the two effective parameters; this substantially simplifies the

understanding.

Assuming Ωeff = Ω∗
eff and initially having all the population in the ground state, the

general solution to (2.11) can be copied from (1.17) [19]:

cg(t) = e
∆eff
2
t

(
cos
(
Ω̄efft

)
− i

∆eff

2Ω̄eff
sin
(
Ω̄efft

))
(2.13a)

cs(t) = ie
∆eff
2
tΩeff

Ω̄eff
sin
(
Ω̄efft

)
(2.13b)

with Ω̄eff :=
√
Ω2

eff + (∆eff/2)2 being the generalised effective Rabi frequency.

The effective detuning

∆eff = ∆s +
|Ωp|2 − |Ωc|2

∆e
. (2.14)

can yield some insight into this effective system and contains two terms: the two-photon

resonance and the difference between the AC-Stark shifts at both levels. This shows that

in order to be on effective resonance not only must be the two-photon resonance fulfilled
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but also the AC-Stark shifts have to cancel out (fig. 2.2b). The AC-Stark shifts cancelling

out is equivalent to the condition Ωp ≈ Ωc. Another possibility for being on the effective

resonance is to have the two-photon resonance cancel out the difference in AC-Stark

shifts, as shown in figure 2.2c. In other words: for given Rabi frequencies Ωp and Ωc, the

effective resonance generally does not coincide with the two-photon resonance.

The amplitude of the Rabi oscillation of the probability to find the atom in the Rydberg-

S-state is

Pmax = max
(
|cs(t)|2

)
=

∣∣∣∣Ωeff

Ω̄eff

∣∣∣∣2 = Ω2
eff

Ω2
eff + (∆eff/2)2

(2.15)

which means that in order to have full Rabi oscillations between both states the effective

detuning has to be zero. Otherwise, some of the population is stuck in the ground state.

Naively, one would expect that the higher one chooses one of the two Rabi frequencies

the better the coupling between the ground- and Rydberg-S-state. But considering the

effect of the probe- and coupling-Rabi frequencies on the amplitude through the effective

detuning (2.14), one finds a rather surprising fact: the amplitude of the Rabi oscillations

between |g〉 and |s〉 depends on the relative strength of the Rabi frequencies. This is due

to the fact that if only one Rabi frequency is increased, an AC-Stark shift is introduced

on one of the levels without being compensated by the other AC-Stark shift.

2.2 Three-photon excitation

The four-level system used for P-state excitation is very similar to the three-level system

discussed in section 2.1, the only difference being having two intermediate levels that are

far off resonance. In this section the method of adiabatic elimination, presented in section

2.1, is used to eliminate the intermediate levels in the four-level system. Furthermore

a technique to find an effective master equation is presented to analyse the effects of

spontaneous emission from the rapidly decaying excited state.
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2.2.1 Adiabatic elimination

The four-level ladder-type system as shown in figure 2.1b, can be described in the ap-

propriate rotating frame and RWA by the Hamiltonian

Ĥ = − ~∆e |e〉 〈e| − ~∆s |s〉 〈s| − ~∆p |p〉 〈p|

− ~
(
Ωp |e〉 〈g|+Ω∗

p |g〉 〈e|
)

− ~ (Ωc |s〉 〈e|+Ω∗
c |e〉 〈s|)

− ~ (Ωmw |p〉 〈s|+Ω∗
mw |s〉 〈p|) (2.16)

with the three-photon detuning ∆p := (νp + νc + νmw)− ωp. Neglecting the decay of the

excited state for the moment, the general quantum state of the four-level system can be

represented by the Hilbert-space state vector

|ψ(t)〉 = cg(t) |g〉+ ce(t) |e〉+ cs(t) |s〉+ cp(t) |p〉 . (2.17)

The differential equations governing the time evolution for the basis-state coefficients can

be found by applying the Schrödinger equation using the Hamiltonian (2.16):

ċg =
1

i~

〈
g
∣∣∣ Ĥ ∣∣∣ψ〉 = iΩ∗

pce (2.18a)

ċe =
1

i~

〈
e
∣∣∣ Ĥ ∣∣∣ψ〉 = i∆ece + iΩpcg + iΩ∗

ccs (2.18b)

ċs =
1

i~

〈
s
∣∣∣ Ĥ ∣∣∣ψ〉 = i∆scs + iΩcce + iΩ∗

mwcp (2.18c)

ċp =
1

i~

〈
p
∣∣∣ Ĥ ∣∣∣ψ〉 = i∆pcp + iΩmwcs. (2.18d)

For large detunings at the intermediate levels, i.e. |∆e|, |∆s| � Ωp,Ωc,Ωmw, |∆p|, for

both intermediate state coefficients (2.18b) and (2.18c) two separate timescales appear:

a fast evolution on the timescale of the detunings 1/∆e,s and a slow evolution on the

timescale of the Rabi frequencies 1/Ωp,c,mw; this resembles the behaviour of the intermedi-

ate state for the three-level case. Assuming that the rapid oscillation does not influence

the dynamics on the timescale of the Rabi frequencies, it can be approximated that the

intermediate states instantaneously reach equilibrium; this assumption is further justi-

fied by numerically solving the full OBEs for this system in chapter 3. Therefore, similar

to the three-level case, the time derivatives of the intermediate populations can be set

to zero in first order to obtain:

ce = − Ωpcg +Ω∗
ccs

∆e
(2.19a)

cs = − Ωcce +Ω∗
mwcp

∆s
. (2.19b)
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The two intermediate states show a similar behaviour as the single intermediate state in

the three-level case: both ce and cs adiabatically follow the evolution of the outer states

|g〉 and |p〉. However, there is also a mixing term between both intermediate states

induced by the coupling Rabi frequency Ωc. The intermediate states also differ from the

three-level case in the fraction of the population which is transferred into these states.

Whereas the population of the intermediate state in the three-level case was effected by

both outer states equally, here, the intermediate populations are mainly influenced by

the coupling to the nearest outer state. The influence on the population by the nearest

intermediate state can be ignored, as it is doubly suppressed, because the intermediate

populations are already suppressed by factors of Ωp/∆e and Ωmw/∆s respectively.

Plugging equation (2.19a) into (2.19b) and vice versa one obtains

ce =

(
1− |Ωc|2

∆e∆s

)−1(
Ω∗
cΩ

∗
mw

∆e∆s
cp −

Ωp
∆e

cg

)
(2.20a)

cs =

(
1− |Ωc|2

∆e∆s

)−1(
ΩcΩp
∆e∆s

cg −
Ω∗
mw

∆s
cp

)
(2.20b)

which can be used to eliminate ce and cs from equations (2.18) using the definition

∆̃2 := ∆e∆s − |Ωc|2:

ċg = − i
∆s|Ωp|2

∆̃2
cg + i

Ω∗
pΩ

∗
cΩ

∗
mw

∆̃2
cp (2.21a)

ċp = i

(
∆p −

∆e|Ωmw|2

∆̃2

)
cp + i

ΩpΩcΩmw

∆̃2
cg (2.21b)

where the effective Rabi frequency and AC-Stark shifts for the four-level case can be

defined as

Ωeff :=
ΩpΩcΩmw

∆̃2
(2.22)

Sg :=
∆s|Ωp|2

∆̃2
=

|Ωp|2

∆e − |Ωc|2
∆s

(2.23)

Sp :=
∆e|Ωmw|2

∆̃2
=

|Ωmw|2

∆s − |Ωc|2
∆e

(2.24)

to simplify equations (2.21):

ċg = − iSg cg + iΩ∗
eff cp (2.25a)

ċp = i (∆p − Sp) cp + iΩeff cg. (2.25b)

With the altered Rabi frequency and Stark shifts, as defined above, the system is

transformed into the same form as for the three-level atom after adiabatic elimination
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(2.5). Hence, after setting the ground-state energy to to zero via the transformation

cg,p −→ cg,p e
iSgt, the set of differential equations can be copied from (2.11) [19]:

ċg = iΩ∗
eff cp (2.26a)

ċp = i∆effcp + iΩeff cg (2.26b)

using the altered effective detuning ∆eff := ∆p + Sg − Sp. This, again, exactly matches

the differential equations governing the behaviour of a real two-level atom (1.16). Hence,

also in the four-level case, it possible to reduce the description of the four-level dynamics

to the well-known two-level problem in the regime of large detunings at the intermediate

states.

The solution to (2.26), with initially all the population in the ground state and assum-

ing Ωeff = Ω∗
eff, is given by (2.13)1. The explicit forms of the effective detuning and

generalised effective Rabi frequency are:

∆eff =∆p +
∆s|Ωp|2 −∆e|Ωmw|2

∆̃2
(2.27)

Ω̄eff =

√
Ω2

eff +
1

4

(
∆p +

∆s|Ωp|2 −∆e|Ωmw|2

∆̃2

)2

(2.28)

where here, in order for the effective detuning to vanish, not only the mere Rabi fre-

quencies have to be taken into account but also the intermediate detunings. The Rabi

frequencies are weighted by the more distant intermediate detuning. As before, the

amplitude of the Rabi oscillation reads

Pmax = max
(
|cp(t)|2

)
=

∣∣∣∣Ωeff

Ω̄eff

∣∣∣∣2 = Ω2
eff

Ω2
eff + (∆eff/2)2

(2.29)

which is the figure of merit when it comes to exciting P-states by driving three-photon

Rabi oscillations from the ground state.

Neglecting the effects of decay, adiabatic elimination has reduced the rather complicated

full description of the four-level dynamics to a very simple description characterised only

by the effective parameters Ωeff and ∆eff.

2.2.2 Effects of the intermediate-state decay

Thus far, the effects of spontaneous emission have been neglected. As in the four-level

scheme used for excitation the excited state |e〉 has a decay rate which is of the order of the

used Rabi frequencies, it is expected to influence the excitation dynamics in a significant
1substituting cs(t) −→ cp(t)
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way. In contrast to a real decaying two-level system, where the decay happens on the

transition that is driven by the laser, here the decay happens on an intermediate state.

Hence, it is expected that these two systems behave qualitatively differently.

A description of the system including spontaneous decay is needed in order to estimate

whether or not the intermediate decay has a significant effect on the P-state excitation.

This cannot be done in the simple description in terms of Hilbert-space vectors, used in

the adiabatic elimination in 2.1 and 2.2.1; therefore, a density operator approach is used

to include decoherence effects. Reiter and Sørensen have presented an effective operator

formalism for open quantum systems (2012) [32] that is used here to derive an effective

master equation to describe the excitation dynamics.

The basic idea is the same as for the adiabatic elimination performed on the atomic state

coefficients ci(t): because the |g〉 ↔ |p〉 transition is driven by lasers close to resonance

and the lasers are off-resonant with respect to the intermediate levels {|e〉 , |s〉}, the

system dynamics separates into two different timescales: the slow evolution of {|g〉 , |p〉}
and the rapidly oscillating evolution of {|e〉 , |s〉}. Deviating from the notation in [32],

here the states in subspace O = {|g〉 , |p〉} are called outer states, whereas the states

in I = {|e〉 , |s〉} are called the intermediate states. The scheme used here eliminates

the intermediate states and yields an effective description for the evolution of the outer

states. The effective operator formalism is the equivalent of adiabatic elimination on the

level of the master equation.

The Hilbert space can be separated into two orthogonal subspaces by the projection

operators

P̂O := |g〉 〈g|+ |p〉 〈p| (2.30)

P̂I := |e〉 〈e|+ |s〉 〈s| (2.31)

with the properties P̂O + P̂I = 1 and P̂OP̂I = 0. They can be used to separate the

Hamiltonian (2.16), describing the non-dissipative evolution of the laser-driven four-level

system, into the two subspace Hamiltonians

ĤO := P̂OĤP̂O = −~∆p |p〉 〈p| (2.32)

ĤI := P̂IĤP̂I

= − ~∆e |e〉 〈e| −∆s |s〉 〈s|

− ~ (Ωc |s〉 〈e|+Ω∗
c |e〉 〈s|) (2.33)
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which only act on the respective subspace degrees of freedom. The connection between

the two subspaces is given by the excitations

V̂+ := P̂IĤP̂O = −~Ωp |e〉 〈g| − ~Ω∗
mw |s〉 〈p| (2.34)

and the de-excitations

V̂− := P̂OĤP̂I = −~Ω∗
p |g〉 〈e| − ~Ωmw |p〉 〈s| (2.35)

that couple the outer- and intermediate-states, where V̂†
+ = V̂− and V̂ := V̂+ + V̂−.

Hence, the total Hamiltonian (2.16) can be written as

Ĥ = ĤO + ĤI + V̂+ + V̂−. (2.36)

In this formalism it is assumed that decay only occurs from the excited- to the ground-

states. This is true for the system considered here, assuming the decay from the P-state

is negligible. As shown in table 1.2, the timescale associated with the decay from the

Rydberg-P- and Rydberg-S-states is much longer than the other timescales involved;

thus it can safely be neglected. Since all other decay channels are either dipole forbidden

or neglected, the only channel left is |e〉 −→ |g〉 with a decay rate γ and its corresponding

Lindblad operator L̂ = |g〉 〈e|.

Defining a non-Hermitian Hamiltonian of the quantum jump formalism [32]:

ĤNH := ĤI − i
γ

2
L̂†
kL̂k

= − ~ δe |e〉 〈e| − ~ δs |s〉 〈s|

− ~ (Ωc |s〉 〈e|+Ω∗
c |e〉 〈s|) (2.37)

where the detunings including decay are defined as δe := (∆e + iγ/2), δs = ∆s and

δ̃2 := δeδs − |Ωc|2. The expression is non-Hermitian since δ∗e 6= δe. The inverse of (2.37)

with respect to the intermediate-state subspace identity 1I = |e〉 〈e|+ |s〉 〈s| is

Ĥ−1
NH = − 1

~
δs

δ̃2
|e〉 〈e| − 1

~
δe

δ̃2
|s〉 〈s|

+
1

~
Ωc

δ̃2
|s〉 〈e|+ 1

~
Ω∗
c

δ̃2
|e〉 〈s| . (2.38)
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The effective Hamiltonian is given by [32]:

Ĥeff := − 1

2
V̂−

(
Ĥ−1

NH +
(
Ĥ−1

NH

)†)
V̂+ + ĤO

= +
1

2
~

(
δs|Ωp|2

δ̃2
+
δs|Ωp|2

(δ̃2)
∗

)
︸ ︷︷ ︸

~Sg

|g〉 〈g|

+

1

2
~

(
δe|Ωmw|2

δ̃2
+
δ∗e |Ωmw|2

(δ̃2)
∗

)
︸ ︷︷ ︸

~Sp

−~∆p

 |p〉 〈p|

− 1

2
~

(
ΩpΩcΩmw

δ̃2
+

ΩpΩcΩmw

(δ̃2)
∗

)
︸ ︷︷ ︸

~Ωeff

|p〉 〈g|

− 1

2
~

(
Ω∗
pΩ

∗
cΩ

∗
mw

δ̃2
+

Ω∗
pΩ

∗
cΩ

∗
mw

(δ̃2)
∗

)
︸ ︷︷ ︸

~Ω∗
eff

|g〉 〈p| (2.39)

where the prefactors can be identified as Sg and Sp being the AC-Stark shift at the

ground- and P-state respectively and Ωeff the effective Rabi frequency. These expressions

can be rewritten using the identities

1

2

(
1

δ̃2
+

1

(δ̃2)
∗

)
=

∆̃2

∆̃4 +
(
γ∆s

2

)2 (2.40)

1

2

(
δe

δ̃2
+

δ∗e

(δ̃2)
∗

)
=

∆e∆̃
2 +

(γ
2

)2
∆s

∆̃4 +
(
γ∆s

2

)2 ≈ ∆e
∆̃2

∆̃4 +
(
γ∆s

2

)2 (2.41)

where in the last approximation it was used that γ � |∆e|, |∆s|:

Sg =∆s|Ωp|2
∆̃2

∆̃4 +
(
γ∆s

2

)2 (2.42)

Sp = |Ωmw|2
∆e∆̃

2 +
(γ
2

)2
∆s

∆̃4 +
(
γ∆s

2

)2 ≈ ∆e|Ωmw|2
∆̃2

∆̃4 +
(
γ∆s

2

)2 (2.43)

Ωeff =ΩpΩcΩmw
∆̃2

∆̃4 +
(
γ∆s

2

)2 . (2.44)
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These results are consistent with the expressions derived by adiabatic elimination on the

state-vector coefficients, as they agree in the limit γ −→ 0, since

∆̃2

∆̃4 +
(
γ∆s

2

)2 −→ 1

∆̃2
. (2.45)

In equation (2.39) the ground-state energy is shifted by the AC-Stark shift. In order to

set the ground-state energy to zero again a unitary transformation Û(t) = e−iSgt 1O =

e−iSgt1O has to be applied to the system as in equation (1.12), where 1O = |g〉 〈g|+|p〉 〈p|
is the outer-state subspace identity. The transformed Hamiltonian is

Ĥeff = − ~ (∆p + Sg − Sp)︸ ︷︷ ︸
∆eff

|p〉 〈p| − ~ (Ωeff |p〉 〈g|+Ω∗
eff |g〉 〈p|) (2.46)

with the effective detuning

∆eff = ∆p + Sg − Sp = ∆p +
(
∆s|Ωp|2 −∆e|Ωmw|2

) ∆̃2

∆̃4 +
(
γ∆s

2

)2 . (2.47)

Since, the detunings are the dominant frequencies in this system, the decay term is only

a small correction to the denominator of (2.40), since (∆e∆s−|Ωc|2)2 � (γ∆s)2/4. Hence,

the decay term can be treated as a small perturbation and (2.40) can be expanded in

γ∆s around 0:

∆̃2

∆̃4 +
(
γ∆s

2

)2 =
1

∆̃2
− γ2∆2

s

4∆̃6
+O

(
(γ∆s)

3
)
. (2.48)

In the limit of large detunings already the first order correction term can be neglected

for most purposes.

The effective Hamiltonian together with the effective Lindblad operator [32]

L̂eff := L̂
(
ĤNH

)−1
V̂+

=
δsΩp

δeδs − |Ωc|2︸ ︷︷ ︸
=:α

|g〉 〈g| − Ω∗
cΩ

∗
mw

δeδs − |Ωc|2︸ ︷︷ ︸
=:β

|g〉 〈p| (2.49)

yields the effective master equation

˙̂ρ =
1

i~

[
Ĥeff, ρ̂

]
− γ

2

(
L̂†

effL̂effρ̂+ ρ̂L̂†
effL̂eff − 2L̂effρ̂L̂

†
eff

)
(2.50)
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that can be used to find the effective optical Bloch equations for the outer-state subspace

density matrix ρ:

ρ̇gg = γ|β|2ρpp + iΩ∗
effρpg − iΩeffρgp −

γ

2
α∗βρpg −

γ

2
β∗αρgp (2.51a)

ρ̇pp = − γ|β|2ρpp − iΩ∗
effρpg + iΩeffρgp +

γ

2
α∗βρpg +

γ

2
β∗αρgp (2.51b)

ρ̇gp = − i∆effρgp + iΩ∗
eff (ρpp − ρgg)−

γ

2

(
|α|2 + |β|2

)
ρgp +

γ

2
α∗β (ρgg + ρpp) . (2.51c)

These OBEs can now be compared to what would be expected from a real two-level atom

with a decaying excited state (1.44). The terms in black resemble the master equation

for a real two-level atom with the effective Rabi frequency (2.44), the effective detuning

(2.47) and a decay rate

γ̃ = γ|β|2 = γ|Ωc|2|Ωmw|2

∆̃4 +
(
γ∆s

2

)2 (2.52)

where γ̃ � γ because of the small prefactor, |β|2 � 1, in the far off-resonant regime.

The coloured terms, however, do not appear for real two-level atoms. The two scales for

these terms are γ
2α

∗β, γ2β
∗α and γ

2 |α|
2. Both scales are real factors, assuming the Rabi

frequencies are real, with

Γ :=
γ

2
α∗β =

γ

2
β∗α =

γ

2

∆sΩpΩcΩmw

∆̃4 +
(
γ∆s

2

)2 (2.53)

Θ :=
γ

2
|α|2 = γ

2

∆2
sΩ

2
p

∆̃4 +
(
γ∆s

2

)2 . (2.54)

Surprisingly, the extra terms act on the system as a reverse decay from the ground- to

the P-state. The term +Γ (ρgg + ρpp) ≈ +Γ increases the coherence between the two

states, which in turn, induces population transfer from the ground- to the P-state. This

means that decay on the intermediate state may even enhance population transfer to the

P-state. In the following, this is referred to as intermediate decay enhanced population

transfer.

In the regime where the lasers are tuned far off resonance with respect to the intermediate

levels, the timescale at which population is transferred to the P-state by this process is

long compared to the period of the Rabi oscillation because Γ � Ωeff. Therefore, this

process is expected to have little influence on the Rydberg P-state excitation in this

regime. Going to smaller detunings this effect may play a bigger role; however, it is not

possible to make reliable predictions for smaller detunings since the models presented

here are only valid in the far off-resonant regime.
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On timescales much shorter than γ̃ and Γ the (downwards- or upwards-)decay of the P-

state can be neglected and the behaviour of the system can again be approximated as an

effective two-level system with an off-resonant Rabi frequency and oscillation amplitude:

Ω̄eff =
√
Ω2

eff + (∆eff/2)2 (2.55)

Pmax = max
(
|cp(t)|2

)
=

Ω2
eff

Ω2
eff + (∆eff/2)2

(2.56)

where the intermediate decay leads to small corrections of the effective parameters Ωeff

and ∆eff.

2.3 Other level structures and STIRAP

The method of adiabatic elimination of an off-resonantly coupled intermediate state,

shown in 2.1 and 2.2.1, has been applied to ladder-type level schemes, as this way it

is possible to address highly lying Rydberg states. However, in principle this method

can be used for any kind of system, where intermediate states are bypassed by large

detunings while resonantly coupling the outer states. The two other possibilities for a

three-level scheme are shown in figure 2.3. For a four-level system there are a few more

configurations, e.g. the N-type configuration [33]. The only difference in the calculations

are the signs of the level energies and detunings.

Instead of resonantly coupling to the P-state in the four-level ladder-type system while

being off-resonant with respect to the intermediate levels, it is also possible to have

resonant coupling to all four states but have time dependent Rabi frequencies. In the

Stimulated Raman Adiabatic Passage (STIRAP) the couplings are applied in a pulse

sequence, where there are time delays between the pulses [34, 35]. Such schemes have

|e〉

|g1〉
|g2〉

γ

(a)

|g〉

|e1〉
|e2〉

γ1
γ2

(b)

Figure 2.3: Other possible three-level configurations: (a) Λ-type with two ground
states and one excited state, and (b) V-type with one ground state and two excited

states
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already been successfully implemented to excite Rydberg atoms in a three-level scheme

[36]. A STIRAP scheme for the four-level ladder-type system has been proposed by

Zhang et al. [37]. Their numerical simulations suggest that over 90% of the population

may be transferred to the P-state in a STIRAP-pulse duration of a few 100 ns. However,

the peak probe- and coupling-Rabi frequency used is 400MHz which is far beyond the

capabilities of the laser system currently used in the experiment.



Chapter 3

Numerical simulation of the

four-level system

In order to check the validity of the effective models presented in chapter 2 and to

understand the three-photon excitation scheme actually used in the experimental set-up,

a full numerical simulation of the excitation, based on the optical Bloch equations, is

carried out. This allows for simulating different excitation scenarios in great detail.

The master equation for a four-level system driven by three lasers as depicted in figure

2.1b is given by

˙̂ρ = −
∑
k

γk
2

(
L̂†
kL̂kρ̂+ ρ̂L̂†

kL̂k − 2L̂kρ̂L̂
†
k

)
+

1

i~

[
Ĥ, ρ̂

]
(3.1)

where the sum runs over the decay channels k. The decay channels and their respective

decay rates γk and Lindblad operators L̂k are:

• |p〉 −→ |s〉, γps, L̂ps = |s〉 〈p|

• |p〉 −→ |g〉 γpg, L̂pg = |g〉 〈p|

• |s〉 −→ |e〉 γse, L̂se = |e〉 〈s|

• |e〉 −→ |g〉 γeg, L̂eg = |g〉 〈e| .

Here all dipole-allowed decay channels are included; therefore, the implemented numer-

ical scheme is generally able to include effects of all possible decays. However, for the

analysis carried out in the rest of this chapter, only the rapid decay of the excited state,

as shown in the schematic level structure in figure 2.1b, is considered.

37
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The corresponding Hamiltonian is

Ĥ = − ~∆e |e〉 〈e| − ~∆s |s〉 〈s| − ~∆p |p〉 〈p|

− ~
(
Ωp |e〉 〈g|+Ω∗

p |g〉 〈e|
)

− ~ (Ωc |s〉 〈e|+Ω∗
c |e〉 〈s|)

− ~ (Ωmw |p〉 〈s|+Ω∗
mw |s〉 〈p|) (3.2)

where, in general, the three-photon detuning ∆p = (νp + νc + νmw) − ωp at level |p〉
is included. From equations (3.1) and (3.2) the optical Bloch equations for the time

evolution of the density matrix can be found by (1.41):

ρ̇gg = + γegρee + γpgρpp − iΩpρge + iΩ∗
pρeg (3.3a)

ρ̇ee = − γegρee + γseρss + iΩpρge − iΩ∗
pρeg − iΩcρes + iΩ∗

cρse (3.3b)

ρ̇ss = − γseρss + γpsρpp + iΩcρes − iΩ∗
cρse − iΩmwρsp + iΩ∗

mwρps (3.3c)

ρ̇pp = − (γpg + γps) ρpp + iΩmwρsp − iΩ∗
mwρps (3.3d)

ρ̇ge = −
(γeg

2 + i∆e

)
ρge + iΩ∗

p (ρee − ρgg)− iΩcρgs (3.3e)

ρ̇gs = −
(γse

2 + i∆s

)
ρgs + iΩ∗

pρes − iΩ∗
cρge − iΩmwρgp (3.3f)

ρ̇es = −
(γse

2 +
γeg
2 + i (∆s −∆e)

)
ρes + iΩ∗

c (ρss − ρee) + iΩpρgs − iΩmwρep (3.3g)

ρ̇gp = −
(γpg

2 +
γps
2 + i∆p

)
ρgp + iΩ∗

pρep − iΩ∗
mwρgs (3.3h)

ρ̇ep = −
(γeg

2 +
γpg
2 +

γps
2 + i (∆p −∆e)

)
ρep + iΩpρgp + iΩ∗

cρsp − iΩ∗
mwρes (3.3i)

ρ̇sp = −
(γgs

2 + γse
2 +

γpg
2 + i (∆p −∆s)

)
ρsp + iΩ∗

mw (ρpp − ρss) + iΩcρep (3.3j)

In the following section the implementation of the numerical simulation is explained and

simulations are used to find the parameter range in which an effective two-level descrip-

tion is valid. This is followed by simulations of the experimental excitation schemes and

a discussion of the consequences of the results.

3.1 Numerical integration scheme

The optical Bloch equations (3.3) are a set of 10 coupled differential equations, for which

there is an additional constraint

ρgg + ρee + ρss + ρpp = 1 (3.4)
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ensuring unitarity 1. Equations (3.3) can be written in terms of the diagonal and upper

right off-diagonal elements of the density matrix ρ only, because the off-diagonal elements

are coupled via the Hermiticity condition ρ∗ij = ρji. Therefore, the system has ten

independent degrees of freedom in total.

To integrate the density matrix ρ(t) forward in time according to the optical Bloch

equations (3.3) the 4th order Runge-Kutta method for solving ordinary linear differential

equations is used [38]. Let ~y(t) be a vector containing the diagonal and the upper right

off-diagonal elements of the density matrix, i.e.

~y(t) =



ρgg(t)

ρee(t)

ρss(t)

ρpp(t)

ρge(t)

ρgs(t)

ρes(t)

ρgp(t)

ρep(t)

ρsp(t)



(3.5)

where the optical Bloch equations can be expressed in the form

~̇y = f (~y, t) . (3.6)

Furthermore, let ∆t > 0 be the step size. ~y is integrated forward in time from a value at

time tn, ~yn = ~y(tn), to a value at time tn+1 = tn +∆t, ~yn+1 = ~y(tn+1), by the formula:

~yn+1 = ~yn +
∆t

6

(
~k1 + 2~k2 + 2~k3 + ~k4

)
(3.7)

where

~k1 = f (tn, ~yn) (3.8a)

~k2 = f
(
tn +

∆t
2 , ~yn +

∆t
2
~k1

)
(3.8b)

~k3 = f
(
tn +

∆t
2 , ~yn +

∆t
2
~k2

)
(3.8c)

~k4 = f
(
tn +∆t, ~yn +∆t~k3

)
(3.8d)

are the intermediate increments. Unitarity is ensured by a normalisation constraint.
1Actually the OBEs already preserve unitarity; however, by this additional constraint small numerical

errors may be corrected.
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When simulating changes in the Rabi frequencies during the excitation process, the

constant Rabi frequency parameters in the optical Bloch equations (3.3) are changed to

time-dependent parameters

Ωp,Ωc,Ωmw −→ Ωp(t),Ωc(t),Ωmw(t). (3.9)

3.2 Validity of the effective two-level description

By simulating the time evolution of the density matrix using the full optical Bloch

equations, it can be checked to what extend and under which conditions the system

behaves as an effective two-level system, as assumed in the previously discussed theory.

The parameters chosen for the validity check of the two-level approximation are chosen

such that they resemble the experimental conditions:

• Ωp ≈ 2π × 1-10MHz

• Ωmw ≈ 2π × 1-10MHz

• Ωc ≈ 2π × 10MHz

• ∆e = ∆s = −2π × 100MHz

• γeg = γ = 2π × 6.067MHz

• γse, γpg, γps ≈ 0 .

Figure 3.1 shows the time evolution for the atomic states under effective resonance with-

out decay. The system behaves as one would expect from a two-level atom, undergoing

full Rabi oscillations between |g〉 and |p〉. The intermediate populations are negligibly

small compared to the populations in the outer states.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

po
pu

la
ti

on

t(µs)

ρpp
ρss
ρee
ρgg

Figure 3.1: Simulation of the time-evolution of the atomic states under the conditions
∆e = ∆s = −2π × 100MHz, Ωp = Ωmw = 2π × 1MHz Ωc = 2π × 10MHz, γ = 0
assuming all the population in the ground state initially. The intermediate populations
are too small to be resolved in the plot. The effective parameters are: ∆eff = 0, Ω̄eff =

2π × 1.01 kHz.
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In figure 3.2 the evolution of the excited-state population is shown for the same simula-

tion. Here, two distinct timescales appear for the oscillation: one slow oscillation of the

order of the effective Rabi frequency and one fast oscillation with a period Tfast ≈ 100 ns.

The fast oscillation is due to to the term ∝ ∆e(= 2π/Tfast) in the differential equation for

the excited-state population (2.18b). As assumed in the effective description, this fast

oscillation indeed does not influence the dynamics on the slow timescale. Furthermore,

the amplitude of this oscillation is small compared to the other amplitudes involved. The

slow time evolution can be understood from equation (2.19a): neglecting the fast oscil-

lation, the excited-state population roughly follows the ground-state population with a

downscaled amplitude by the factor −Ωp/∆e. The influence of the S-state population was

neglected, as it is much smaller than the ground-state population.
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Figure 3.2: Simulation of the time-evolution of the excited-state population, param-
eters as in figure 3.1. The inlay shows the rapid oscillation on the timescale of the

detuning 2π/∆ = 100 ns.

The evolution of the S-state population, which is not plotted here, shows a similar

behaviour: there is a fast oscillation which does not influence the oscillation on the

timescale of the effective Rabi frequency; on this longer timescale the S-state population

follows the P-state with a suppressed population.

The generalised Rabi frequency Ω̄eff and the amplitude of the Rabi oscillations between

the ground- and P-state can be compared to its corresponding values in the full numerical

simulations. This comparison can serve as a benchmark for how well the four-level system

is described by the effective model. The quantity used to measure the deviation of Ω̄eff

and Pmax between the effective model and the simulation is the relative error∣∣∣∣xmodel − xsim

xmodel

∣∣∣∣ . (3.10)
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In figures 3.3 and 3.4 the relative errors of Ω̄eff and Pmax for different values of Ωp and

Ωmw are shown. All other parameters have been kept fixed.
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Figure 3.3: Relative error between the generalised Rabi frequency expected by the
effective two-level description and the measured Rabi frequency in the full numerical
simulation as a function of Ωp,Ωmw. The other parameters are as in figure 3.1, except

for the decay rate which is set to γ = 2π × 6.067MHz.
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Figure 3.4: Relative error between the Rabi oscillation amplitude expected by the
effective two-level description and the measured amplitude in the full numerical simu-

lation as a function of Ωp,Ωmw. The other parameters are as in figure 3.1

For each data point in figure 3.3 a numerical simulation has been carried out in which the

Rabi frequency of the P-state oscillation was measured. For most values of Ωp and Ωmw

below 2π × 5MHz, which is the parameter range most relevant to the experiment, the

relative error is well below 1%. However, on the effective resonance—in this case, where

Ωp ≈ Ωmw—the relative error is slightly higher but not exceeding 1.5%. This qualitative
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behaviour also applies to the extended parameter range shown in the plot. It has to be

noted that this scan does not cover Rabi frequencies smaller than 2π×1MHz for Ωp and

Ωmw, as the effective Rabi frequencies gets smaller which makes the simulation very time

consuming. However, it was checked for fewer data points that this trend also continues

for Rabi frequencies of ≈ 2π × 0.1MHz, as expected.

In order to compare the amplitudes in the effective description and the full simulation,

the decay was set to zero to not damp the oscillation. In the parameter range relevant

for the experiment, the deviation is also well-below 1%; therefore, it can be concluded

that the effective model reliably describes the four-level system in this parameter regime.

In both figures 3.3 and 3.4, the errors are large in parameter areas where the assumption

|∆e|, |∆s| � Ωp,Ωc,Ωmw, |∆p| breaks down. As the effective descriptions only rely on

one main assumption, it is simple to determine for which experimental situations it is

valid.

Effects of the excited-state decay: The influence of excited-state decay is shown in

figure 3.5. The oscillation between the ground- and P-state is damped and it approaches

the value 0.5 as expected for a damped effective two-level system on resonance. The

effective Rabi oscillation does not change significantly, as predicted.
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Figure 3.5: Simulation of the time-evolution of the P-state population with decay,
γ = 2π × 6.067MHz, (blue line) and without decay (yellow line). Other parameters as

in figure 3.1

The deviation from a real two-level system is revealed for a non-vanishing effective de-

tuning, as shown in figure 3.6. The blue line shows the time-evolution of the P-state

population for the four-level system compared to the evolution of the excited state in a

real two-level system with decay on the excited state and a decay rate of γ2lvl = γ̃ = γ|β|2

(yellow line). For the first period of the Rabi oscillation both curves show roughly the
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same time evolution. Afterwards the effect of the intermediate decay enhanced popu-

lation transfer to the P-state takes over. The transferred population exceeds the Rabi

oscillation amplitude by far. Also the oscillation is damped on a timescale of about

100 µs whereas the timescale associated with γ̃ is 20ms. However, the deviation from

the real two-level atom description does not mean that the effective two-level description

is inaccurate, as the effects causing the deviation are described by the effective opti-

cal Bloch equations (2.51). In other words: the plots in figure 3.6 are the solutions to

the effective optical Bloch equations with and without the terms that differ from a real

two-level atom.
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Figure 3.6: Comparison between an effective two-level atom with decay ∆e = ∆s =
−2π × 100MHz, Ωp = 2π × 2MHz, Ωmw = 2π × 3MHz Ωc = 2π × 10MHz, γ =
2π × 6.067MHz, ∆eff = −2π × 0.0505MHz, Ωeff = 2π × 0.006 05MHz, γ̃ = 2π ×
0.000 055MHz, (blue line) and a real two-level atom with the effective parameters as

two-level parameters, where the decay happens on the upper level (yellow line)

Three-level systems, as depicted in figure 2.1a, with a decay of the intermediate state

show a similar behaviour [29].

The decay-enhanced population transfer can be understood by considering the dressed-

state interpretation. The Hamiltonian (2.16) for the four-level system can be expressed

in matrix form as:

Ĥ = ~


0 −Ωp 0 0

−Ωp −∆e −Ωc 0

0 −Ωc −∆s −Ωmw

0 0 −Ωmw −∆p

 (3.11)

where it was assumed that the Rabi frequencies are real numbers. Unfortunately, there

is no analytical solution for the eigenenergies and eigenstates for general detunings and
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Rabi frequencies. However, there is a solution for the special case ∆p = 0,∆e = ∆s =: ∆

and Ωp = Ωmw =: Ω, for which the corresponding eigenenergies and eigenstates are:

E1 = ~ω1 =
~
2

(
−∆+Ωc −

√
4Ω2 + (∆− Ω)2

)
(3.12a)

E2 = ~ω2 =
~
2

(
−∆− Ωc −

√
4Ω2 + (∆+ Ω)2

)
(3.12b)

E3 = ~ω3 =
~
2

(
−∆+Ωc +

√
4Ω2 + (∆− Ω)2

)
(3.12c)

E4 = ~ω4 =
~
2

(
−∆− Ωc +

√
4Ω2 + (∆+ Ω)2

)
(3.12d)

|d1〉 =
1

N1

(
− |g〉+ ω1

Ω
|e〉 − ω1

Ω
|s〉+ |p〉

)
(3.13a)

|d2〉 =
1

N3

(
|g〉 − ω2

Ω
|e〉 − ω2

Ω
|s〉+ |p〉

)
(3.13b)

|d3〉 =
1

N2

(
− |g〉+ ω3

Ω
|e〉 − ω3

Ω
|s〉+ |p〉

)
(3.13c)

|d4〉 =
1

N4

(
|g〉 − ω4

Ω
|e〉 − ω1

Ω
|s〉+ |p〉

)
(3.13d)

where Ni are normalisation factors. This case corresponds to effective resonance as the

Stark shifts at |g〉 and |p〉 are equal and thus cancel out. In the limit of large detunings,

i.e. |∆| � Ω,Ωc, the square root in the energy expressions can be approximated as ≈ ∆.

Therefore, the dressed states separate into two classes: the two states |d1〉, |d2〉 with an

energy ≈ −~∆, and the other two states |d3〉, |d3〉 with energies ≈ 0. In this limit the

dressed states can be written as

|d1〉 ≈
1√
2
(|e〉 − |s〉) (3.14a)

|d2〉 ≈
1√
2
(|e〉+ |s〉) (3.14b)

|d3〉 ≈
1

N2
(|g〉 − |p〉) (3.14c)

|d4〉 ≈
1

N4
(|g〉+ |p〉) . (3.14d)

However, for finite detunings all states have at least small contributions from all basis

states {|g〉 , |e〉 , |s〉 , |p〉}.

As the system moves away from effective resonance, the dressed states may only be found

numerically, which is done in the following. For this, the following parameters are used:

∆e = ∆s = −2π × 100MHz, Ωc = 2π × 10MHz, Ωp = 2π × 1MHz and kept fixed while

Ωmw is changed, which thereby changes the effective detuning.
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Figure 3.7: Excited- and S-state contributions of |d1〉 and |d2〉 expressed as probabil-
ities Pn(di) := | 〈n | di〉 |2 as a function of microwave Rabi frequency

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 1 2 3 4 5
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 1 2 3 4 5

Ωmw/2π (MHz)

|d3〉

Pg
Pp

Ωmw/2π (MHz)

|d4〉

Pg
Pp

Figure 3.8: Ground- and P-state contributions of |d3〉 and |d4〉 expressed as probabil-
ities Pn(di) := | 〈n | di〉 |2 as a function of microwave Rabi frequency

The dependence of the dressed states on the microwave Rabi frequency is shown in figures

3.7 and 3.8. The states |d1〉 and |d2〉 are not affected significantly, as their characteristics

are expected to be dominated by the coupling between the excited- and S-state which is

not changed here. Essentially, the two states remain the (anti-)symmetric superpositions

(3.14a) and (3.14b). On the other hand, the two zero-energy dressed states change

significantly with effective detuning. When Ωmw < Ωp, i.e. ∆eff > 0, |d3〉 becomes

essentially the ground state and |d4〉 becomes the P-state and vice-versa for ∆eff < 0. At

effective resonance, i.e. when Ωp = Ωmw, both states are in a superposition with equal

contributions from the ground- and P-state, in agreement with the analytically derived

dressed states.

A given state |ψ(t)〉 can be expressed in the basis of the dressed states as:

|ψ(t)〉 =
4∑
i=0

ci(t) |di〉 . (3.15)

As the states |d1〉 and |d2〉 contain large contributions of the rapidly decaying excited
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state, c1 and c2 go to 0 on the timescale of the excited-state lifetime, assuming the

population of the S-state is negligible. This leaves a superposition of |d3〉 and |d4〉.

0
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Figure 3.9: Excited-state contributions of |d3〉 and |d4〉 expressed as probabilities
Pn(di) := | 〈n | di〉 |2 as a function of microwave Rabi frequency

As for finite detunings there is a non-zero excited state contribution to both |d3〉 and

|d4〉, the excited state decay matters here as well. Figure 3.9 shows the excited state

contribution as a function of Ωmw. To understand the influence of the excited state

decay, three cases have to be considered:

1. Ωmw ≈ Ωp, ∆eff ≈ 0: Pe(d3) ≈ Pe(d4)

2. Ωmw < Ωp, ∆eff > 0: Pe(d3) > Pe(d4)

3. Ωmw > Ωp, ∆eff < 0: Pe(d3) < Pe(d4)

In the first case, the system is on effective resonance and both |d3〉 and |d4〉 have equal

contributions of the decaying intermediate level, and |ψ〉 evolves into an equal superpo-

sition of these two dressed states. In the second case, as the excited state decays, the

population is transferred into state |d4〉, whereas it is transferred into state |d3〉 in the

third case. In both cases, the state in which the population is transferred to is ≈ |p〉.
Therefore, the intermediate decay transfers population from the ground- to the P-state

when the system is effectively off-resonant. This contradicts the expectations from the

predictions based on a non-decaying system. For a non-decaying system the mechanism

by which population is transferred is the Rabi oscillation between the two states. For a

system with intermediate decay, there is an additional transferring process which is the

decay of a dressed state with a high contribution of the ground state.

In principle this process can be used to transfer population in a very robust way, if it

were not for the finite lifetime of the Rydberg states. The timescale of this process can

be estimated by the prefactor (2.53) associated with it in the effective optical Bloch
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equations (2.51). Assuming ∆e = ∆s = ∆ it can be written as

Γ ≈ γ

2

Ωeff

∆
. (3.16)

For typical parameters the effective Rabi frequency is of the order of a few 1 kHz to 10 kHz,

whereas the detuning is of the order of 10MHz to 100MHz, therefore

Γ ≈ 1× 10−5 to 1× 10−3 γ. (3.17)

So in order to make significant use of the intermediate decay enhanced population transfer

in the regime where the lasers are tuned far off resonance with respect to the intermediate

levels, one has to find a system in which the lifetimes of the rapidly decaying state and

of the Rydberg state are a couple of orders of magnitude apart. Another possibility may

be to decrease the detuning at the intermediate levels and thereby increase the effective

Rabi frequency. However, this has to be further investigated as the models developed

here are only valid in the far off-resonant regime, and therefore cannot make reliable

predictions as the intermediate detunings are decreased.

3.3 Excitation scheme

The effective models and numerical simulations so far show that in principle it is possible

to find a parameter regime for which the three-photon transition is on effective resonance,

and the four-level system undergoes full Rabi-oscillations between the ground- and the

P-state. Hence, the population can be completely transferred into the P-state by applying

the lasers for the duration of a quarter Rabi cycle. However, for typical parameters

the timescale of the Rabi oscillation is 10 µs to 1000 µs, whereas the typical lifetime of

Rydberg states is ≈ 30 µs to 100 µs; depending on the chosen parameters, this can limit

the population that can be transferred during one excitation cycle. Moreover, in order

to be able to use the excited fraction of atoms to perform experiments on them, an

excitation scheme with a duration of less than the Rydberg-state lifetime is desired.

The Rabi-pulse shape applied to the cold atoms sample is schematically depicted in

figure 3.10. As the laser fields cannot be turned on and off instantaneously, the Rabi

pulse is ramped up and down for a time τramp. The pulse durations are of the order of

1 µs to 10 µs. The maximum Rabi frequencies Ωi,max can be chosen independently for

the three laser drivings.
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Figure 3.10: Excitation laser sequence, with a ramp-up time τramp, a pulse duration
τi and a maximum Rabi frequency Ωi,max for the applied fields Ωi, i ∈ {p, c,mw}.

3.4 Excitation scheme optimisation

There are four parameters that can be changed in the excitation scheme: the maximum

Rabi frequencies Ωi,max for the three pulses, i.e. i ∈ {p, c,mw}, the pulse duration τ ;

where fixed detunings and three-photon resonance, i.e. ∆p = 0, are assumed. As it is

impractical to examine the dependence of all parameters simultaneously, the effect of

changing each parameter is investigated separately. This obviously does not deliver the

global optimum for the excitation process for a given parameter range but rather yields

understanding for the influences of the different parameters on the excitation process. In

turn, this understanding can serve as the basis for the actual excitation optimisation in

the experiment.

The influence of changing the Rabi frequencies is shown in figure 3.11. The scans of

the probe- and the microwave-Rabi frequency look very similar: as the Rabi frequency

is increased, the population after the excitation shows oscillatory behaviour, where the

maxima become smaller going to higher Rabi frequencies. The oscillation stems from

the Rabi oscillation between the ground- and the P-state: as Ωp or Ωmw are changed,

both the effective Rabi frequency (2.44) and the effective detuning (2.47) are changed

which in turn change the generalised Rabi frequency (2.55). The oscillatory behaviour

can be imagined as squeezing more and more Rabi oscillations into the fixed excitation

window, as shown in figure 3.12.

The decrease of the maxima can be explained by the decrease of the Rabi oscillation

amplitude: as Ωp or Ωmw are increased, the effective detuning is changed and according

to equation (2.56) the amplitude of the Rabi oscillation changes. The expected Rabi

oscillation amplitude is overplotted in figures 3.11a) and 3.11b). The amplitude reaches

its maximum where Ωp = Ωmw, which corresponds to effective resonance as the interme-

diate detunings are equal. However, the maximum Rabi oscillation and the maximum

population transfer achieved in the excitation cycle do not coincide. The reason for this
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Figure 3.11: Simulated P-state population after excitation process as a function of a)
Ωp, b) Ωmw and c) Ωc (blue line) and Rabi oscillation amplitude from equation (2.56)

(green line)

is that, for the parameters chosen here, at maximum Rabi oscillation the excitation time

is shorter than a quarter of the oscillation period, i.e. the excitation is over before the P-

state population reaches the maximum. By increasing either Ωp or Ωmw, the generalised

Rabi frequency is also increased, and the P-state population at the end of the excitation

cycle gets closer to the maximum of the oscillation. However, at the same time the

amplitude is decreased. If the Rabi frequency of either Ωp or Ωmw, where the oscillation

amplitude reaches is maximum, i.e. where the system is on effective resonance, is called

Ωres, and the Rabi frequency for which the period is such that the oscillation reaches

the first maximum at the end of the excitation cycle is called Ωper, the optimal Rabi

frequency can be found between these two values, i.e.

Ωres < Ωopt < Ωper. (3.18)

From a naive point of view, the fact that the excitation becomes less efficient when in-

creasing either of these two Rabi frequencies above a certain threshold is surprising. One
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Figure 3.12: Time evolution of the P-state population during one excitation cycle.
The parameters used are: a) as for the 1st maximum in fig. (3.11a), b) as for the 1st

minimum in fig. (3.11a) and c) as for the 2nd maximum in fig. (3.11a).

would rather expect to enhance population transfer by increasing one of the couplings.

However, one has to consider the effect of the AC-Stark shifts which shift the system out

of effective resonance and thereby reduce the excitation efficiency. The most important

experimental consequence is that the microwave coupling has to be adjusted carefully. As

the S- and P-state are Rydberg states with a high principal quantum number, the dipole

matrix element corresponding to the |s〉 ↔ |p〉 transition is orders of magnitude larger

compared to those for transitions between states with low principal quantum numbers.

As the Rabi frequency is proportional to the dipole matrix element, even moderate inten-

sities for the microwave field can lead to Rabi frequencies which are orders of magnitude

larger than the probe Rabi frequency which in turn significantly reduces the population

transfer in the excitation.

The expression (2.56) for the oscillation amplitude is only valid for timescales much

shorter than γ̃ and Γ, where the decay terms in the effective optical Bloch equations (2.51)

can be neglected. In figure 3.11a) it can be seen that for high probe Rabi frequencies the

transferred population in the numerical simulation exceeds the calculated Rabi oscillation

amplitude. This is due to enhanced population transfer by the intermediate decay.

Figure 3.12c) shows the same effect: at the first minimum of the P-state oscillation the

population does not vanish but shows an offset caused by the population that has been

transferred by upwards decay.

Although they are not resolved in the plot, the effects of upwards decay are also present

in the scan of the microwave Rabi frequency in figure 3.11b). The effects are not as
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pronounced as in the probe Rabi frequency scan, because a high probe coupling increases

the excited-state population and thereby the influence of its decay.

Nevertheless, the dominant process by which population is transferred in this parameter

regime is the Rabi oscillation between the ground- and the P-state. The effect of upwards

decay plays only a minor role.

The coupling Rabi frequency dependence of the excited-state population after excita-

tion, shown in figure 3.11c), does not show an oscillatory behaviour, because the cou-

pling strength changes the effective parameters differently: the coupling Rabi frequency

enters only in the scaling factor of the effective detuning (2.47) and therefore changes

it more slowly compared to the probe- or microwave-Rabi frequency. The plot shows

that increasing the coupling Rabi frequency is beneficial to the population transfer. The

currently used laser system is run at a coupling Rabi frequency of around 2π × 10MHz

which can be further increased to around 2π × 25MHz.
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Figure 3.13: Simulated P-state population after excitation process as a function pulse
duration τ : a) on effective resonance and b) effectively off-resonant.

The influence of the pulse duration on the excitation is rather trivial: it increases the

time in which the system can undergo oscillations between ground- and P-state. In

the parameter range investigated here, this means that on effective resonance, where a

quarter oscillation period is larger than the pulse duration, the population transfer is

increased because the population can evolve closer to the oscillation maximum before

the pulse is over (fig. 3.13a)). For a system which is effectively off resonance with an

oscillation period which is comparable to or smaller than the pulse duration, the pulse

duration determines how many Rabi oscillations the system undergoes before the end of

the excitation (fig. 3.13b)). As the population transfer is more efficient close to effective

resonance a longer pulse duration would be preferable. However, the finite lifetime of the

Rydberg P-state of ≈ 50 µs (for the 42P-state [12]) limits the maximum pulse duration.

In order to perform experiments using the atoms which have been excited to the P-state,
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the excitation process needs to be shorter than the lifetime; therefore a pulse duration

of 10 µs is suggested.

So far, all simulations have been carried out in a regime where the half period of the

effective two-level Rabi oscillation on effective resonance is longer than the excitation

cycle. In order to check what the highest reachable population transfers are, simulations

close to the experimentally highest achievable Rabi frequencies have been done. As in

figure 3.14a) can be seen, population transfers of over 90% can be reached. The reason

the system is not undergoing full Rabi oscillations is the approaching breakdown of the

two-level regime for higher Rabi frequencies.

In figure 3.14 the effective resonance was achieved by setting the probe- and microwave-

Rabi frequency equal and thereby ensuring that the AC-Stark shifts at |g〉 and |p〉 cancel

out. However, the effective model shows that the effective resonance can also be achieved

by counteracting the difference in AC-Stark shifts with the three-photon detuning ∆p,

as it is shown in figure 3.14b). This is particularly interesting when the laser system has

different maximum Rabi frequencies for the different couplings. Thereby the maximum

laser intensity on all couplings can be used without sacrificing population transfer by

inducing an effective detuning.
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Figure 3.14: Excitation close to maximum Rabi frequencies: a) with cancelling AC-
Stark shifts, where Ωp = Ωmw = 2π × 4MHz, Ωc = 2π × 25MHz, ∆e = ∆s =
−2π × 100MHz, ∆p = 0 b) with three-photon detuning cancelling difference in AC-
Stark shifts, where Ωp = 2π × 8MHz, Ωmw = 2π × 4MHz, Ωc = 2π × 25MHz,
∆e = ∆s = −2π × 100MHz, ∆p = 2π × 0.511MHz such that ∆eff = 0. The exci-

tation durations where adjusted to ≈ 2π/Ωeff
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3.5 Comparison to experimental data

The AC-Stark shift can be measured by performing spectroscopy measurements on the

microwave coupling, as shown in figure 3.15. For each data point a cloud of 87Rb-atoms

is cooled, the Rydberg-P-states are excited, as described in section 3.3, and the Rydberg

atoms are ionised and detected by the MCP, as shown in figure 1.1; thereby the fraction of

Rydberg atoms can be measured. During one spectroscopy scan, the laser intensities, and

thereby the Rabi frequencies, are kept fixed. In order to measure the change in AC-Stark

shift another spectroscopy scan is done with a different laser intensity on the probe

transition, i.e. a different probe Rabi frequency Ωp. By increasing the probe intensity

the peaks in the spectroscopy shift to lower microwave frequencies, which corresponds to

an upwards energy shift of the ground state.

The possibility to measure the AC-Stark shift by spectroscopy of the microwave transition

opens up a new way of indirectly measuring the probe Rabi frequency: from rewriting

equation (2.23) one obtains:

Ωp =

√
Sg

(
∆e −

|Ωc|2
∆s

)
(3.19)
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where Sg can be obtained from spectroscopy, and ∆e and ∆s are well-known parameters

of the laser system. The EIT-splitting of the absorption profile, as shown in figure 1.8

depends on the coupling Rabi frequency Ωc [14]; thereby, Ωc can indirectly be measured.

The advantage of using the microwave field to measure the strength of the probe field

lies in its high accuracy: the spectroscopy can be carried out in steps of the order of

10 kHz which allows for a high precision measurement of Ωp.
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Chapter 4

Summary and Outlook

4.1 Summary

In this thesis it could be shown that the three-photon excitation dynamics in the regime

of large intermediate detunings can be understood in terms of a simplified two-level

picture, where only two effective parameters are needed to characterise the behaviour.

In order to resonantly couple the ground- and the Rydberg-P-state with a three-photon

scheme not only the energy difference of the bare atomic states but also the light-induced

AC-Stark shifts have to be taken into account. Therefore, to tune the excitation scheme

on effective resonance either the AC-Stark shifts can be balanced out, or the three-photon

detuning can counteract the difference in AC-Stark shifts.

The effect of the rapidly decaying excited state on the population transfer is small in

the parameter regime used in the experiment and can be neglected for most purposes.

However, it was shown that this intermediate decay can, in principle, be used to enhance

population transfer to the P-state. An effective two-level master equation as well as a

simplified dressed-state interpretation of this process were given.

Furthermore, numerical simulations of the full four-level system were carried out. The

simulations were used to check the validity of the analytical two-level descriptions: they

show good agreement for parameters where the assumption of large intermediate detun-

ings holds. The excitation with finite coupling durations, as used in the experiment,

were simulated, and the influence of the different parameters on the population transfer

were analysed. With the experimentally highest achievable Rabi frequencies, the possible

population transfer was estimated to be over 90%.

57
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By these analytical and numerical results a better understanding of the three-photon

excitation was gained, allowing for a simplified optimisation of the laser system to effec-

tively excite Rydberg-P-states in ultracold gases.

4.2 Outlook: measurement of single impurities

As a next step for exploring the dynamics in strongly interacting quantum systems, a

system for detecting single Rydberg-P-state excitations is developed. In this section a

short outlook on this project is given.

In a simplified picture, the effect of the long-range Rydberg interactions can be incorpo-

rated into an energy shift of the Rydberg levels [9]. In the EIT coupling, the intermediate

state is coupled to a Rydberg state which can strongly interact with neighbouring atoms

that also have an admixture a Rydberg state—it may be the same or a Rydberg state

which is energetically close. Therefore, interactions influence the behaviour of the atom

with respect to optical couplings on transitions involving these interacting states. This

effect becomes apparent when exciting Rydberg states in a dense ensemble of cold atoms:

after one atom is excited, the atoms in its proximity experience an energy shift by which

they are effectively tuned out of resonance with respect to the applied excitation scheme,

and consequently, these atoms cannot be excited. This effect is called Rydberg blockade,

and the lengthscale associated with it is expressed through the, so called, blockade radius

Rb; it is typically of the order of a few µm [9].

Atoms in the ground state can usually be detected using the absorption imaging tech-

nique when a suitable closed cycled transition scheme is available. Being excited states

with multiple decay channels, Rydberg atoms do not fulfil this requirement, and another

method is needed to optically detect them. Few approaches have been proposed and

developed [39, 40]. The one that is used in this experiment, called Interaction-Enhanced

Imaging (IEI), leverages three effects: the Rydberg blockade to have Rydberg atoms spa-

tially separated more than the imaging system’s optical resolution, electromagnetically

induced transparency (EIT) to translate optical properties of the Rydberg state onto the

imaging transition and the strong Rydberg-Rydberg interactions to locally change the

susceptibility of the atom cloud around the Rydberg atom that is to detect.

In this chapter the following set-up—also shown in figure 4.1—is considered: a cloud of,

so called probe atoms, which are ground-state atoms with a small admixture of an |ns〉
state from the EIT-coupling, with a small number of highly excited Rydberg atoms, the

so called impurities, in state |n′p〉. The impurities can be imagined to be in a bath of

probe atoms, as Nground state � Nimpurity.
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Figure 4.1: Interaction between impurity- and probe-atoms: the impurity atoms (left)
in state |np〉 are coupled to the probe atoms (right) by dipole-dipole interaction.

The basic idea behind the IEI scheme is to use the fact that the presence of the impu-

rity affects the absorption properties of the surrounding probe atoms that, due to EIT

coupling, are in a mixed state between the ground- and the Rydberg-state |ns〉. The

interaction induces an energy shift on the |ns〉 state of the probe atoms, which depends

on the distance between the probe- and the impurity-atom. By this interaction induced

shift, the coupling-transition |e〉 ↔ |ns〉 is tuned out of resonance with respect to the

coupling frequency νc. This effectively weakens the the transparency induced by the

coupling laser. Hence, in a cloud of ultracold atoms under EIT conditions, the probe

atoms in the proximity of an impurity are not transparent for the probe-light and there-

fore cast a shadow on absorption images of the cloud. This is schematically depicted in

figure 4.2. The probe atoms inside the blockade sphere can be imagined to behave as

Figure 4.2: EIT-imaging scheme: the probe beam is attenuated by ground-state atoms
in the proximity of a Rydberg excitation due to interaction induced level shifts.

two-level absorbers, as depicted in figure 1.7a; whereas the background atoms outside

the blockade sphere are under three-level EIT conditions (figure 1.7b). The lengthscale

of the EIT-weakening caused by interaction is given by the blockade radius.
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However, so far IEI is limited by the fact that the sensitivity of this method allowed

to detect the susceptibility change induced by fewer than ten Rydberg atoms; while

they could not be distinguished individually. In order to observe many-body quantum

dynamics in more detail, it is desirable to have an imaging method and an optical system

that are capable of spatially resolving single Rydberg atoms in a cloud of otherwise

unexcited ground-state atoms.

IEI can, in principle, be used to resolve singe impurities. However, there are a few

challenges to be met:

1. The impurity excitations can move to one of the neighbouring ground-state atoms;

thereby the image is blurred and single impurities may not be resolved.

2. The signal-to-noise ratio (SNR): there are many intrinsic noise sources of the imag-

ing system such as photon shot noise, and detector electronics noise.

3. The signal coming from the atom cloud can be reduced by imperfect EIT conditions

due to interactions other than the impurity-probe interactions.

The first problem can be addressed by reducing the cloud to the size of a single blockade

sphere. In such a reduced cloud the impurity cannot travel further than the blockade

radius, and thus no additional blurring is induced by the Rydberg excitation moving from

one atom to another. Obviously, this constraint destroys all possible dynamics between

multiple impurities; therefore, this can only be a provisional solution in order to show

that single impurity detection is possible in principle.

The intrinsic noise of the imaging system can be overcome by increasing the exposure

time for a single image; however, this is limited by the lifetime of the impurity atoms.

The maximum contrast in the absorption image between areas blockaded by an impurity

and the surrounding background gas under EIT conditions is given by the difference

between the resonant absorption of two-level- and EIT-absorbers (see figure 1.8). In

order to have the optimum achievable contrast one needs to have perfect EIT in the

background gas, i.e. no absorption on resonance. Any distortion of the EIT system,

leads to an increase of resonant absorption, which is precisely the effect exploited in the

imaging method. However, distortions of the EIT originating from other effects than

probe-impurity interactions weaken the signal produced by the cloud. So in order to

optimise the signal coming from the cloud one needs to understand how the interactions

between probe- and impurity-atoms, and between probe- and other probe-atoms influence

the light propagation through cloud under EIT conditions.
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In principle it is possible to formulate such a problem in the full density matrix descrip-

tion. However, the dipole-dipole operator (1.5) couples the atoms, such that they can

no longer be described in terms of single-atom density matrices. In order to consider

correlations between all atoms in an N -atom system, the density operator needs to be

expressed in terms of N -particle product states:

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψN 〉 . (4.1)

Let the problem be reducible to η states for each atom; then the number of entries in the

density matrix scales as η2N , and therefore increases exponentially with the atom num-

ber. In general, problems involving such large density matrices are neither analytically

solvable nor can they be tackled numerically for atom numbers comparable to typical

experiments. At best, numerical solutions of EIT with interactions using the full density

matrix are limited to a handful of atoms. To overcome these computational difficulties

the system needs to be simplified, e.g. by including interactions as mere level shifts and

neglecting interatomic correlations. How EIT is influenced by interparticle interactions

is still not fully understood and an open question for current research. Many theoretical

[41–48] as well as experimental [8] investigations have been carried out in this field.

Being able to resolve single impurities in ultracold Rydberg gases will enable full access to

the dynamics of such a system. This would open the possibility to address fundamental

questions about coherent-quantum and open-system dynamics in a variety of settings,

exploiting the enhanced interaction properties of Rydberg atoms.
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